Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T03:25:28.082Z Has data issue: false hasContentIssue false

Profiling Composition Variations in Composition-Modulated GaP/InP Short-Period Superlattices Using Resonance Raman Scattering

Published online by Cambridge University Press:  10 February 2011

H. M. Cheong
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
Yong Zhang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
A. G. Norman
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
J. D. Perkins
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
K. Y. Cheng
Affiliation:
Dept. of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801
K. C. Hsieh
Affiliation:
Dept. of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

We use resonance Raman scattering (RRS) and electroreflection (ER) measurements to profile the the composition and strain variations in laterally composition-modulated (CM) GaP/InP short-period superlattices (SPS's). The ER spectra of a GaP2.2/InP2.0 SPS give the fundamental band-gap energy at 1.69±0.05eV, which is about 210 meV lower than the band gap energy of a GaInP random alloy with the same overall composition. The RRS measurements reveal strong dependences of the phonon spectrum on the polarization and the excitation energy. In RRS spectra measured with the polarization of both excitation and scattered photons along the composition modulation direction, the GaP-like longitudinal optical (LO) phonon redshifts by 4.0±0.5 cm−1 near the resonance with the fundamental energy gap. On the other hand, when the polarizations are orthogonal to the composition modulation, the LO phonons redshift as much as 16 cm−1 at low excitation energies. A comparison of the experimental data with a model calculation gives the average In composition in the In-rich region as 0.70±0.02, and the average Ga composition in the Ga-rich region as 0.68±0.02. Our result also indicates that there are small volumes (less than 1% volume fraction) with very high In mole fraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present Address: Dept. of Physics, Sogang University, Seoul, Korea

References

REFERENCES

[1]Hsieh, K. C., Baillargeon, J. N., and Cheng, K. Y., Applied Physics Letters 57, 2244 (1990).Google Scholar
[2]Cheng, K. Y., Hsieh, K. C., and Baillargeon, J. N., Applied Physics Letters 60, 2892 (1992).Google Scholar
[3]Mascarenhas, A., Alonso, R. G., Homer, G. S., Froyen, S., Hsieh, K. C., and Cheng, K. Y., Superlattices and Microstructures 12, 57 (1992).Google Scholar
[4]Mascarenhas, A., Alonso, R. G., Homer, G. S., Froyen, S., Hsieh, K. C., and Cheng, K. Y., Physical Review B 48, 4907 (1993).Google Scholar
[5]Jun, S. W., Seong, T.-Y., Lee, J. H., and Lee, B., Applied Physics Letters 68, 3443 (1996).Google Scholar
[6]Millunchick, J. Mirecki, Twesten, R. D., Lee, S. R., Folstaedt, D. M., Jones, E. D., Ahrenkiel, S. P., Zhang, Y., Cheong, H. M., and Mascarenhas, A., Journal of Electronic Materials 26, 1048 (1997).Google Scholar
[7]Zhang, Y. and Mascarenhas, A., Physical Review B 57, 12245 (1998).Google Scholar
[8]Follstaedt, D. M., Twesten, R. D., Millunchick, J. M., Lee, S. R., Jones, E. D., Ahrenkiel, S. P., Zhang, Y., and Mascarenhas, A., Physica E 2, 325 (1998).Google Scholar
[9]Yin, X. and Pollak, F. H., Applied Physics Letters 59, 2305 (1991).Google Scholar
[10]Cheong, H. M., Zhang, Y., Norman, A. G., Perkins, J. D., Mascarenhas, A., Cheng, K. Y., and Hsieh, K. C., Physical Review B 60, 4883 (1999).Google Scholar
[11]Cheong, H. M., Mascarenhas, A., Ernst, P., and Geng, C., Physical Review B 56, 1882 (1997).Google Scholar
[12]Sela, I., Gridin, V. V., Beserman, R., and Morkoç, H., Physical Review B 37, 6393 (1988).Google Scholar
[13]Glas, F., Journal of Applied Physics 62, 3201 (1987).Google Scholar