Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T16:05:12.001Z Has data issue: false hasContentIssue false

Production and characterization of Al 2024 matrix composites reinforced with β-Al3Mg2 complex metallic alloy particles

Published online by Cambridge University Press:  25 January 2013

Xiaorui Wang
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Helmholtzstr. 20, D-01069 Dresden, Germany.
Sergio Scudino
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Helmholtzstr. 20, D-01069 Dresden, Germany.
Jürgen Eckert
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Helmholtzstr. 20, D-01069 Dresden, Germany. TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden, Germany,
Get access

Abstract

In this work, composites consisting of the Al 2024 matrix reinforced with β-Al3Mg2 particles have been produced by powder metallurgy with the aim of increasing the strength of the matrix and, at the same time, reducing the density of the material. The β-Al3Mg2 phase represents an ideal candidate as reinforcement in lightweight composites due to its low density and high-temperature strength. The β-Al3Mg2 reinforcement remarkably improves the mechanical properties of the 2024 matrix. In particular, the composite with 20 vol.% reinforcement display yield and compressive strengths exceeding that of the unreinforced matrix by about 120 and 180 MPa, while retaining appreciable plastic deformation of about 30 %. The strength of the material is further increased for the samples with 30 and 40 vol.% of β-Al3Mg2 phase, however, the composites show reduced plastic deformation of 11 and 4.5 %. Furthermore, the addition of the low-density β-Al3Mg2 particles decreases the density of the materials below that of the unreinforced 2024 matrix, considerably increasing the specific strength of the composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cole, G. and Sherman, A., Mater. Charact. 35, 39 (1995).10.1016/1044-5803(95)00063-1CrossRefGoogle Scholar
Immarigeon, J., Holt, R., Koul, A., Zhao, L., Wallace, W., and Beddoes, J., Mater. Charact. 35, 4167 (1995).10.1016/1044-5803(95)00066-6CrossRefGoogle Scholar
Totten, G., Handbook of Aluminum (Taylor & Francis, 2003).Google Scholar
Mousavi, S. Abarghouie, S. and Reihani, , Materials & Design 31, 23682374 (2010).10.1016/j.matdes.2009.11.063CrossRefGoogle Scholar
Kainer, K. U., Metal matrix composites (Wiley-VCH Weinheim, 2006).10.1002/3527608117CrossRefGoogle Scholar
Clyne, T. and Withers, P., An introduction to metal matrix composites (Cambridge University Press, 1993).10.1017/CBO9780511623080CrossRefGoogle Scholar
O'Donnell L, G.. and Looney, , Mater. Sci.Eng. A 303, 292301 (2001).10.1016/S0921-5093(00)01942-0CrossRefGoogle Scholar
Kang, S. J. L., Sintering: densification, grain growth, and microstructure (Butterworth-Heinemann, 2005).Google Scholar
Lloyd, D., Int. Mater. Rev. 39, 123 (1994).10.1179/imr.1994.39.1.1CrossRefGoogle Scholar
Tan X, M. J.. and Zhang, , Mater. Sci.Eng. A 244, 8085 (1998).10.1016/S0921-5093(97)00829-0CrossRefGoogle Scholar
Slipenyuk, A., Kuprin, V., Milman, Y., Goncharuk, V., and Eckert, J., Acta Mater. 54, 157166 (2006).10.1016/j.actamat.2005.08.036CrossRefGoogle Scholar
Scudino, S., Liu, G., Prashanth, K. G., Bartusch, B., Surreddi, K. B., Murty, B. S., and Eckert, J., Acta Mater. 57, 20292039 (2009).10.1016/j.actamat.2009.01.010CrossRefGoogle Scholar
Scudino, S., Surreddi, K. B., Sager, S., Sakaliyska, M., Kim, J. S., Löser, W., and Eckert, J., J. Mater. Sci. 43, 45184526 (2008).10.1007/s10853-008-2647-5CrossRefGoogle Scholar
Lee, M. H., Kim, J. H., Park, J. S., Kim, J. C., Kim, W. T., and Kim, D. H., Scripta Mater. 50, 13671371 (2004).10.1016/j.scriptamat.2004.02.038CrossRefGoogle Scholar
Yu, P., Kim, K. B., Das, J., Baier, F., Xu, W., and Eckert, J., Scripta Mater. 54, 14451450 (2006).10.1016/j.scriptamat.2006.01.001CrossRefGoogle Scholar
El Kabir, T., Joulain, A., Gauthier, V., Dubois, S., Bonneville, J., and Bertheau, D., J. Mater. Res. 23, 904910 (2008).10.1557/jmr.2008.0111CrossRefGoogle Scholar
Schurack, F., Eckert, J., and Schultz, L., Phil. Mag. 83, 807825 (2003).10.1080/0141861031000061710CrossRefGoogle Scholar
Scudino, S., Liu, G., Sakaliyska, M., Surreddi, K. B., and Eckert, J., Acta Mater. 57, 45294538 (2009).10.1016/j.actamat.2009.06.017CrossRefGoogle Scholar
Urban, K. and Feuerbacher, M., J. Non-Cryst. Solids 334335, 143150 (2004).10.1016/j.jnoncrysol.2003.11.029CrossRefGoogle Scholar
Demange, V., Machizaud, F., Dubois, J. M., Anderegg, J. W., Thiel, P. A., and Sordelet, D. J., J. Alloys Compd. 342, 2429 (2002).10.1016/S0925-8388(02)00118-4CrossRefGoogle Scholar
Feuerbacher, M., Thomas, C., Makongo, J., Hoffmann, S., Carrillo-Cabrera, W., and Cardoso, R., Z. Krist. 222, 259288 (2007).Google Scholar
Samson, S., Acta Cryst. 19, 401413 (1965).10.1107/S0365110X65005133CrossRefGoogle Scholar
Roitsch, S., Heggen, M., Lipinska-Chwalek, M., and Feuerbacher, M., Intermetallics 15, 833837 (2007).10.1016/j.intermet.2006.08.017CrossRefGoogle Scholar
Buchheit, R., Grant, R., Hlava, P., McKenzie, B., and Zender, G., J. Electrochem. Soc. 144, 26212627 (1997).10.1149/1.1837874CrossRefGoogle Scholar
San Marchi, C., Cao, F., Kouzeli, M., and Mortensen, A., Mater. Sci. Eng. A 337, 202211 (2002).10.1016/S0921-5093(02)00035-7CrossRefGoogle Scholar
Rodriguez-Baracaldo, R., Benito, J., and Cabrera, J., J. Mater. Sci. 45, 47964804 (2010).10.1007/s10853-010-4600-7CrossRefGoogle Scholar