Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T23:10:17.732Z Has data issue: false hasContentIssue false

Production And Characterization Of A Plutonium-238 Loaded Ceramic Waste Form For The Study Of The Effects Of Alpha Decay Damage

Published online by Cambridge University Press:  10 February 2011

M. Steven
Affiliation:
Argonne National Laboratory-West P.O. Box 2528 Idaho Falls, Idaho 83403–2528
Steven M. Frank
Affiliation:
Argonne National Laboratory-West P.O. Box 2528 Idaho Falls, Idaho 83403–2528
David W. Esh
Affiliation:
Argonne National Laboratory-West P.O. Box 2528 Idaho Falls, Idaho 83403–2528
Stephen G. Johnson
Affiliation:
Argonne National Laboratory-West P.O. Box 2528 Idaho Falls, Idaho 83403–2528
Marianne Noy
Affiliation:
Argonne National Laboratory-West P.O. Box 2528 Idaho Falls, Idaho 83403–2528
Thomas P. O'Holleran
Affiliation:
Argonne National Laboratory-West P.O. Box 2528 Idaho Falls, Idaho 83403–2528
Get access

Abstract

Argonne National Laboratory has developed a glass-bonded sodalite ceramic waste form to immobilize fission products and plutonium that accumulate during the electrometallurgical conditioning of spent nuclear fuel. To investigate the effects of alpha decay damage on the structure and leaching characteristics of the ceramic material, 238Pu has been incorporated into the ceramic waste form. The 238pu,with its high specific activity, significantly increases the rate of alpha damage to the waste form. Long term studies have begun with periodic examination of the 238Pu loaded ceramic material. A number of characterization techniques are used to study the alpha decay damage on the structure of the waste form. In addition, PCT type leachate studies will be performed to determine the effect of alpha decay damage on the durability of the ceramic waste form. Preliminary results from this study are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weber, W.J., J. Am. Ceram. Soc. 76 [7] 1729–38 (1993).Google Scholar
2. Clinard, F.W. Jr., Foltyn, E.M., Ewing, R.C., J. Nucl. Mat. 185, 202207 (1991).Google Scholar
3. Storey, B.G., Allen, T.R., Phase Transformations and Systems Driven Far From Equilibrium, Ma, E.,Atzmon, M., Bellon, P., Trivedi, R., Eds., Mat. Res. Soc. Symp. Proc., Vol 481, pp 413418 (1998).Google Scholar
4. Lumpkin, G.R., Ewing, R.C., Chakoumakos, B.C., Greegor, R.B., Lytle, F.W., Foltyn, E.M., Clinard, F.W. Jr., Boatner, L.A., Abraham, M.M., J. Mater. Res., Vol.1,564-576 (1986).Google Scholar
5. Ewing, R.C., Weber, W.J., Clinard, F.W. Jr., Prog. Nucl. Energy 29 (2), 63 (1995)Google Scholar
6. Boult, K.A., Dalton, J.T., Evans, J.P., Hall, A.R., Inns, A.J.. Marples, J.A.C., Paige, E.L., The preparation of fldly active synroc and its radiation stability-Final Report, Oct. 1988. AERER-13318 (Harwell Laboratory, Harwell, UK, 1988).Google Scholar
7. Solomah, A.G., Matzke, H., Scientific Basis for Nuclear Waste Management XII, Lutze, W., Ewing, R.C., Eds., Mat. Res. Soc. Symp. Proc., Vol.127, pp. 241249 (1989).Google Scholar
8. Weber, W.J.,Ewing, R.C., Catlow, C.R.A., Rubia, T. Diaz de la, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., Zinkle, S.J., J. Mater. Res., Vol.13, pp. 14321484 (1998).Google Scholar
9. Beynon, T.D., Dudziak, D.J., Hannum, W.H., Eds., Prog. Nucl. Energy, Vol.31 (1997).Google Scholar
10. Goff, K.M., Benedict, R.W., Bateman, K., Lewis, M.A., Pereira, C., Musick, C.A., International Topical Meeting on Nuclear and Hazardous Waste Management, Spectrum, Seattle, WA, 24362443 (1996).Google Scholar
11. Bibler, N.E., Bates, J.K., Scientific Basis for Nuclear Waste Management XIII, Mat. Res. Soc. Symp. Proc., Vol.176, pp. 327338 (1990).Google Scholar
12. ASTM C1285-94, ASTM Philadelphia, PA, (1995).Google Scholar
13. Breck, D.W., Zeolite Molecular Sieves, (Wiley, New York. 1974), pp. 8392, 202, 483–498.Google Scholar
14. Frank, S.M., Bateman, K.J., DiSanto, T., Johnson, S.G., Moschetti, T.L., Noy, M.H. and O'Holleran, T.P., Phase TransJormations and Systems Driven Far From Equilibrium, Eds., Ma, E., Atzmon, M., Bellon, P. and Trivedi, R., Mat. Res. Soc. Symp. Proc. Vol.481, pp. 351356 (1998).Google Scholar