Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T22:53:47.042Z Has data issue: false hasContentIssue false

Processing of deeply etched GaAs/AlGaAs quantum cascade lasers with grating structures

Published online by Cambridge University Press:  26 February 2011

S. Golka
Affiliation:
Zentrum für Mikro- und Nanostrukturen, Technische Universität Wien, Floragasse 7 1040. Wien, Österreich
M. Austerer
Affiliation:
Zentrum für Mikro- und Nanostrukturen, Technische Universität Wien, Floragasse 7 1040. Wien, Österreich
C. Pflügl
Affiliation:
Zentrum für Mikro- und Nanostrukturen, Technische Universität Wien, Floragasse 7 1040. Wien, Österreich
W. Schrenk
Affiliation:
Zentrum für Mikro- und Nanostrukturen, Technische Universität Wien, Floragasse 7 1040. Wien, Österreich
G. Strasser
Affiliation:
Zentrum für Mikro- und Nanostrukturen, Technische Universität Wien, Floragasse 7 1040. Wien, Österreich
Get access

Abstract

Gratings in GaAs/AlGaAs mid-infrared quantum cascade lasers (QCLs) are fabricated with a structure depth of more than 10 μm. A N2/SiCl4 inductively coupled plasma reactive ion etching (ICP-RIE) process was employed to achieve extremely smooth sidewalls and selectivities to the SiNX etch mask of up to 70:1. EDX spectra measured on as-etched samples show that sidewall etch inhibition is caused by a thin Si containing layer on the sidewalls that is formed simultaneously with ICP etching of GaAs at the bottom of the trenches. To demonstrate device application gratings with a pitch of 1.72 μm are applied to long rib waveguide -based QCLs emitting at λ = 10.7 μm. When etched laterally together with the rib the grating gives rise to stable single mode emission up to 295K from these QCLs. The respective grating coupling coefficient is determined to be κ = 29 cm-1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hvozdara, L., Lugstein, A., Finger, N., Gianordoli, S., Schrenk, W., Unterrainer, K., Bertagnolli, E., Strasser, G., and Gornik, E., Appl. Phys. Lett 77, pp. 12411243 Google Scholar
2. Höfling, S., Bazhenov, A., Fischer, M., Seufert, J., Wolf, A., Emmerling, M., Reithmaier, J.P., and Forchel, A., Electron. Lett 40 no.2 (2004)Google Scholar
3. Colombelli, R., Srinivasan, K., Troccoli, M., Painter, O., Gmachl, C., Tennant, D. M., Sergent, A., Sivco, D. L., Cho, A. Y., and Capasso, F., Science 302, 1374 (2003).Google Scholar
4. Golka, S., Schrenk, W., and Strasser, G., in Proc. WOCSDICE 28, Smolenice, Slovacia (2004), pp. 127128 Google Scholar
5. Falcony, C., Ortiz, A., Lopez, S., Alonso, J.C., and Muhl, S., Thin Solid Films 199, pp. 269278 (1991)Google Scholar
6. Stern, M.B. and Liao, P.F., J. Vac. Sci. Technol. B 1 (4) 1053 (1983)Google Scholar
7. Pflügl, C., Schrenk, W., Anders, S., Strasser, G., Becker, C., Sirtori, C., and Bonetti, A. M. Y., Appl. Phys. Lett. 83, 4698 (2003).Google Scholar