Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T20:39:55.100Z Has data issue: false hasContentIssue false

Processing and Properties of Nanophase Oxides

Published online by Cambridge University Press:  21 February 2011

J. A. Eastman
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439–4838.
Y. X. Liao
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439–4838.
A. Narayanasamy
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439–4838.
R. W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439–4838.
Get access

Abstract

Nanophase oxides (Al2O3, MgO, ZnO and TiO2), with typical grain sizes in the range 2–20 nm, have been synthesized by the condensation of ultrafine particles in a convective inert gas followed by their collection and in-situ consolidation in vacuum at ambient temperature. These new materials, owing to the reduced scale of their grains along with the enhanced cleanliness of their grain boundaries, are found to have significantly improved properties relative to those of their coarser-grained, conventionally-prepared counterparts. Nanophase rutile (TiO2) with an initial mean grain diameter of 12 nm, for example, has been found to sinter at 400 to 600°C lower temperatures than conventional rutile powders, without the need for compacting or sintering aids, while retaining a small grain size. Additionally, the importance of the extremely clean surfaces obtained with the gas condensation method has been demonstrated by comparing the sintering behavior of powders with and without air exposure prior to consolidation. The research completed on the processing and properties of nanophase ceramics is reviewed, and the potential for engineering advanced ceramics using the nanophase processing method is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kimoto, K., Kamiya, Y., Nonoyama, M., and Uyeda, R., Jpn. J. Appl. Phys. 2, 702 (1963).Google Scholar
2. Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).Google Scholar
3. Birringer, R. and Gleiter, H., in Encyclopedia of Materials Science and Engineering, Suppl. Vol.1, Cahn, R. W., ed. (Pergamon Press, Oxford, 1988) p. 339.Google Scholar
4. Siegel, R. W. and Eastman, J. A., Mater. Res. Soc. Symp. Proc. 132, 3 (1989).Google Scholar
5. Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A. III, Kaldor, A., Louie, S. G., Moscovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).Google Scholar
6. Froes, F. H. and Suryanarayana, C., J. Metals 41 (6), 12 (1989).Google Scholar
7. Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).Google Scholar
8. Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).Google Scholar
9. Yamauchi, K., Yatsuya, S., and Mihama, K., J. Cryst. Growth 46, 615 (1979).Google Scholar
10. Shiojiri, M. and Kaito, C., J. Cryst. Growth 52, 173 (1981).Google Scholar
11. Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, Hansen, N. et al., eds. (Risø National Laboratory, Roskilde, 1981) p. 15.Google Scholar
12. Hahn, H., Eastman, J. A., and Siegel, R. W., Ceramic Transactions B 1, 1115 (1988).Google Scholar
13. Averback, R. S., Hahn, H., Höfler, H. J., Logas, J. L., and Shen, T. C., Mater. Res. Soc. Symp. Proc. 153, 3 (1989).Google Scholar
14. Li, Z., Hahn, H., and Siegel, R. W., Mater. Letters 6, 342 (1988).Google Scholar
15. Eastman, J. A., Mater. Res. Soc. Symp. Proc. 132, 27 (1989).Google Scholar
16. Li, Z., Ramasamy, S., Hahn, H., and Siegel, R. W., Mater. Letters 6, 195 (1988).Google Scholar
17. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, Second Edition (John Wiley & Sons, New York, 1976).Google Scholar
18. Barringer, E. A., Ph. D. Thesis, Massachusetts Institute of Technology (1983).Google Scholar
19. Edelson, L. H., M. S. Thesis, Lawrence Berkeley Laboratory, University of California at Berkeley (1986).Google Scholar
20. Mayo, M. J., Siegel, R. W., Narayanasamy, A., and Nix, W. D., to be published.Google Scholar