Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T03:07:46.475Z Has data issue: false hasContentIssue false

Processing and Properties of Mo5Si3 Single Crystals and Alloys

Published online by Cambridge University Press:  10 February 2011

F. Chu
Affiliation:
Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545, U. S. A., [email protected]
D. J. Thoma
Affiliation:
Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545, U. S. A., [email protected]
K. J. McClellan
Affiliation:
Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545, U. S. A., [email protected]
P. Peralta
Affiliation:
Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545, U. S. A., [email protected]
F. X. Li
Affiliation:
Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545, U. S. A., [email protected]
E. Fodran
Affiliation:
Materials Science and Technology Division, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545, U. S. A., [email protected]
Get access

Abstract

Among the high-temperature intermetallic systems, transition-metal silicides are attractive because of their high melting temperatures (many greater than 2273 K) and potential oxidation resistance. In particular, Mo5Si3 exhibits a very high melting point (2453 K) and also has a solubility range of 2 – 3 atomic percent, which can aid in processing and alloy design strategies. The focus of this study is to evaluate the processing and properties of Mo5Si3 and Mo5Si3-base ntermetallics. For the optimal baseline comparison, high-purity single crystals have been fabricated, and thermal and elastic properties have been experimentally measured. Although Mo5Si3 has a strong thermal expansion anisotropy, ts elastic anisotropy factors and the Poisson's ratios indicate that Mo5Si3 is less anisotropic in elasticity. The combination of the thermal and elastic properties has been employed to calculate the thermal residual stress and to explain the potential for grain boundary cracking during processing. Room temperature Vickers indentation tests of Mo5Si3 have been performed. The orientation dependence of hardness and fracture toughness of Mo5Si3 single crystals have been obtained. The corresponding deformation and fracture modes have been revealed by microscopy studies. Finally, micro- and macroalloyed Mo5Si3 with aluminum and boron will be briefly explored with property assessments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Petrovic, J. J., MRS Bulletin XVIII, (1993), 35.CrossRefGoogle Scholar
2. Massalski, T. B., ed. Binary Alloy Phase Diagram, ASM, Pittsburgh, (1986), 2666.Google Scholar
3. Vasudévan, A. K. and Petrovic, J. J., Mat. Sci. & Eng., A155 (1992), 1.Google Scholar
4. Shah, D. M., Berczik, D., Anton, D. L., and Hecht, R., Mat. Sci. & Eng., A155 (1992), 45.CrossRefGoogle Scholar
5. Gibala, R., Chang, H., Czarnik, C., Edwards, K., and Misra, A., in Structural Intermetallics, ed. by Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M. V.,TMS, Warrendale, PA, (1993), 561.Google Scholar
6. Yamaguchi, M., and Inui, H., in Structural Intermetallics, ed. by Darolia, R., Lewandowski, J. J., Liu, C.T., Martin, P. L., Miracle, D. B., and Nathal, M. V., TMS, Warrendale, PA, (1993), 127.Google Scholar
7. Umakoshi, Y., Nakashima, T., Nakano, T., and Yanagisawa, E., MRS Symp. Proc, 322 (1994), 9.CrossRefGoogle Scholar
8. Maloy, S. A., Mitchell, T. E., and Hauer, A. H., Acta Metall. Mater., 43, (1995), 657.CrossRefGoogle Scholar
9. Silva, A. Costa e and Kaufman, M. J., Scripta Met Mater, 29 (1993) 1141.Google Scholar
10. Meyer, M. K. and Akinc, M., J. Am. Ceram. Soc., 79 (1996) 938.Google Scholar
11. Meyer, M. K. and Kramer, M. J., and Akinc, M., Intermetallics, 4 (1996) 273.Google Scholar
12. Nunes, C. A., Sakidja, R., and Perepezko, J. H., Structural Intermetallics, TMS (1999).Google Scholar
13. Chu, F., Thoma, D. J., McClellan, K. J., Peralta, P., and He, Y., Intermetallics, 7 (1998), 1.Google Scholar
14. Fu, C. L., Wang, Xindong, He, Y. Y., and Ho, K. M., Intermetallics. (1998), in press.Google Scholar
15. Schneibel, J. H., Liu, C. T., Easton, D. S., and Carmichael, C. A., Mater. Sci. & Eng. (1999), in press.Google Scholar
16. Chu, F., Thoma, D. J., McClellan, K. J., and Peralta, P., Mater. Sci. & Eng. (1999), in press.Google Scholar
17. Baskes, M. I., Mater. Sci. & Eng. (1999), in press.Google Scholar
18. Chu, F., Thoma, D. J., Peralta, P., Li, F. X., and Fodran, E., in preparation.Google Scholar
19. Eshelby, J. D., Proc. Roy. Soc. London, A241, (1957), 376.Google Scholar
20. Asaro, R. J. and Barnett, D. M., J. Mech. Phy. Solids, 23, (1975), 77.Google Scholar
21. Peralta, P. and Mitchell, T. E., to be submitted to Scripta Mater. (1998).Google Scholar
22. Anstis, G. R., Chantyikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc., 64, (1981), 533.Google Scholar
23. He, Y., Schwarz, R. B., Migliori, A., and Whang, S. H., J. Mater. Res., 10, (1995), 1187.Google Scholar
24. Chu, F., Lei, Ming, Maloy, S. A., Petrovic, J. J., and Mitchell, T. E., Acta Mater., 44, (1996), 3035.Google Scholar
25. Nye, J. F., Physical Properties of Crystals, Oxford University Press, London, U. K. (1979).Google Scholar
26. Simmons, G., and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, The M. I. T. Press, Cambridge, MA, (1971).Google Scholar
27. Liu, C. T., Schneibel, J., and Yoo, M. H., private communications.Google Scholar
28. Peralta, P., Maloy, S. A., Chu, F., Petrovic, J. J., and Mitchell, T. E., Scripta Mater., 37, (1997), 1599.CrossRefGoogle Scholar
29. Maloy, S. A., Chu, F., Petrovic, J. J., and Mitchell, T. E., in Deformation and Fracture of Ordered Intermetallic Materials III, ed. by Soboyejo, W. O., Fraser, H. L., and Srivatsan, T. S., TMS, Warrendale, PA, (1996).Google Scholar