No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
Structural information provided by computed tomography (CT) can be used for quality control and optimization of processes for manufacturing better materials. The squeeze casting method for producing metal matrix composites involves infiltrating a preform of ceramic fibers with molten metal under high pressure. Part quality can be improved if CT is used before infiltration to determine if the preforms have the desired distribution of fibers and are free of defects. Measurements do not require uniform shapes, and CT systems can even be used to obtain accurate densities on complicated part shapes that are not amenable to bulk density measurements based on weight and size. With this quantitative distribution information as a guide, preform production can be modified to produce either a more uniform fiber distribution or to selectively increase the fiber concentration in critical areas. Problems occurring during later stages of processing can be detected in CT images of the completed part. For example. CT can be used to detect unreinforced regions in metal matrix composites caused by cracking of the preform during the squeeze casting process. CT scans of completed parts can also detect and distinguish variations in structure such as microporosity.