Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T18:22:44.349Z Has data issue: false hasContentIssue false

Probing the Chemical Bonding and Electron Structure of the Benzoate model for Fe-MoF-5

Published online by Cambridge University Press:  03 July 2013

Jun Zhang
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei 230031, P.R. China Department of Physics, University of Science and Technology of China, Hefei, 230026, China
Xiaohong Zheng
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei 230031, P.R. China
Chunsheng Liu
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei 230031, P.R. China
Zhi Zeng*
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei 230031, P.R. China Department of Physics, University of Science and Technology of China, Hefei, 230026, China Kavli Institute for Theoretical Physics China, CAS, Beijing 100190, China
Get access

Abstract

Using first-principles density functional theory, we investigated the chemical bonding and electronic structure of the metal-organic-framework with individual structural element OFe4(CO2Ph)6. The calculations showed that there is no obvious structural difference between OFe4(CO2Ph)6 and OZn4(CO2Ph)6. The analysis of electronic structure and chemical bonding reveals that the Fe-O has mainly ionic interaction and partial covalent interaction while O-C, H-C and C-C exhibit mainly covalent interactions. The finding in this paper may shed light on the synthesis of MOF-5 materials with other metal centers.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meek, S. T., Greathouse, J. A., and Allendorf, M. D., Adv. Mater. 23, 249 (2011).CrossRefGoogle Scholar
Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J. F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J. S., Hwang, Y. K., Marsaud, V., Bories, P. N., Cynober, L., Gil, S., Ferey, G., Couvreur, P., and Gref, R., Nat. Mater. 9, 172(2010).CrossRefGoogle Scholar
Kaye, S. S., Dailly, A., Yaghi, O. M., and Long, J. R., J. Am. Chem. Soc. 139, 14176(2007).CrossRefGoogle Scholar
Lee, J. Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., and Hupp, J. T., Chem. Soc. Rev. 38, 1450(2009).CrossRefGoogle Scholar
Zou, R. Q., Abdel-Fattah, A. I., Xu, H. W., Zhao, Y. S., and Hickmott, D. D., CrystEngComm. 12, 1337(2010).CrossRefGoogle Scholar
Li, H., Eddaoudi, M., O'Keeffel, M. and Yaghi, O. M., nature 402, 276(1999).CrossRefGoogle Scholar
Hausdorf, S., Baitalow, F., Böhle, T., Rafaja, D. and Mertens, Florian. O. R. L., J. Am. Chem. Soc. 132, 10978(2010).CrossRefGoogle Scholar
Babaro, R. and Jiang, J. W., Langmuir 24, 6270(2008).CrossRefGoogle Scholar
Fuentes-Cabrera, M., Nicholson, D. M., Sumpter, B. G., and Widom, M., J. Chem. Phys. 123, 124713(2005).CrossRefGoogle Scholar
Han, S. S., Deng, W. Q., and Goddard, W. A., Angew. Chem. Int. Ed. 46, 6289(2007).CrossRefGoogle Scholar
Sillar, K., Hofmann, A., and Sauer, J., J. Am. Chem. Soc. 131, 4143(2009).CrossRefGoogle Scholar
Mueller, T. and Ceder, G., J. Phys. Chem. B 109, 17974(2005).CrossRefGoogle Scholar
Tafipolsky, M., Amirjalayer, S., and Schmid, R., J. Comput. Chem. 28, 1169(2007).CrossRefGoogle Scholar
Yin, M. C., Wang, C. W., Al, C. C., Yuan, L. J., and Sun, J. T., Univ J Nat Sci. 9, 939(2004).Google Scholar
Delley, B., J. Chem. Phys. 92, 508(1990).CrossRefGoogle Scholar
Perdew, J. P. and Wang, Y., Phys. Rev. B. 45, 13244 (1992).CrossRefGoogle Scholar
Yildirim, T. and Hartman, M. R., Phys. Rev. Lett. 95, 215504(2005).CrossRefGoogle Scholar
Diego, D. A., Combariza, A. F., and Sastre, G., Phys. Chem. Chem. Phys. 11, 9250 (2009).Google Scholar