Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T13:50:49.188Z Has data issue: false hasContentIssue false

Probing of Structure Factor of Water to 57 GPa and 1500 K

Published online by Cambridge University Press:  26 February 2011

Alexander F. Goncharov
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Road NW, Washington, DC, 20015, United States, 202 478 8947, 202 478 8901
Chrystele Sanloup
Affiliation:
[email protected], Universite Pierre et Marie Curie and Institut du Globe de Paris, Paris, N/A, France
Nir Goldman
Affiliation:
[email protected], University of California, Lawrence Livermore National Laboratory, Livermore, CA, 94551, United States
Jonathan C. Crowhurst
Affiliation:
[email protected], University of California, Lawrence Livermore National Laboratory, Livermore, CA, 94551, United States
Lawrence E. Fried
Affiliation:
[email protected], University of California, Lawrence Livermore National Laboratory, Livermore, CA, 94551, United States
Nicola Guignot
Affiliation:
[email protected], European Synchrotron Radiation Facility, Grenoble, N/A, France
Mohamed Mezouar
Affiliation:
[email protected], European Synchrotron Radiation Facility, Grenoble, N/A, France
Yue Meng
Affiliation:
[email protected], HPCAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, United States
Get access

Abstract

The x-ray structure factor of water has been measured along the melting line to 57 GPa and 1500 K using focused monochromatic synchrotron radiation and laser heated diamond anvil cell. The oxygen radial distribution function, g(r) is determined from these data. We have also calculated g(r) using ab initio methods and find a good agreement with the experiment. Based of the similarity of the measured and calculated structure factors determined density of water under extreme conditions unattainable previously.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hubbard, W. B., Nellis, W. J., Mitchell, A. C., Holmes, N. C., Limaye, S. S., and McCandless, P. C., Science 253, 648 (1991).Google Scholar
2. Katayama, Y., Mizutani, T., Utsumi, W., Shimomura, O., Yamakata, M., and Funakoshi, K., Nature 403, 170 (2000); Monaco, G., Falconi, S., Crichton, W. A., and Mezouar, M., Phys. Rev. Lett. 90, 255701 (2003).Google Scholar
3. Soper, A. K., Ricci, M. A., Phys. Rev. Lett. 84, 2881 (2000).Google Scholar
4. Okhulkov, A. V., Demianets, Y. N., and Gorbaty, Y. E., J. Chem. Phys. 100, 1578 (1994).Google Scholar
5. Th. Strässle, Saitta, A. M., Godec, Y. Le, Hamel, G., Klotz, S., Loveday, J. S., and Nelmes, R. J., Phys. Rev. Lett. 96, 067801 (2006).Google Scholar
6. Chiarotti, C.Cavazzoni G. L., Scandolo, S., Tosatti, E., Bernasconi, M., Parrinello, M., Science 283, 44 (1999).Google Scholar
7. Schwegler, E., Galli, G., Gygi, F., and Hood, R. Q., Phys. Rev. Lett. 87, 265501 (2001).Google Scholar
8. Goncharov, A. F., Goldman, N., Fried, L. E., Crowhurst, J. C., Kuo, I-F. W., Mundy, C. J., Zaug, J. M., Phys. Rev. Lett. 94, 125508 (2005).Google Scholar
9. Lin, J.-F., Gregoryanz, E., Struzhkin, V. V., Somayazulu, M., Mao, H. K., Hemley, R. J., Geophys. Res. Lett. 32, L11306 (2005).Google Scholar
10. Goldman, N., Fried, L. E., Kuo, I-F. W., and Mundy, C. J., Phys. Rev. Lett. 94, 217801 (2005).Google Scholar
11. Boehler, R. and De Hantsetters, K., High Pressure Research 24, 391 (2004).Google Scholar
12. Cynn, H., Klepeis, J. E., Yoo, C.-S., and Young, D. A., Phys. Rev. Lett. 88, 135701 (2002).Google Scholar
13. Goncharov, A. F., Crowhurst, J. C., Dewhurst, J. K., Sharma, S., Sanloup, C., Gregoryanz, E., Guignot, N., Mezour, M., submitted.Google Scholar
14. Santoro, M., Lin, J.-F., Mao, H.-K., and Hemley, R. J., J. Chem. Phys. 121, 2780 (2004).Google Scholar
15. Shen, G., Rivers, M. L., Wang, Y., and Sutton, S. R., Rev. Sci. Instrum. 72, 1273 (2001).Google Scholar
16. Mezouar, M., Crichton, W.A., Bauchau, S., Thurel, F., Witsch, H., Torrecillas, F., Blattmann, G., Marion, P., Dabin, Y., Chavanne, J., Hignette, O., Morawe, C. and Borel, C., J. Synch. Rad. 12, 659 (2005).Google Scholar
17. Schultz, E., Mezouar, M., Crichton, W. Bauchau, S., Blattmann, G., Andrault, D., Fiquet, G., Boehler, R., Rambert, N., Sitaud, B., Loubeyre, P., High Press. Res. 25, 71 (2005).Google Scholar
18. Hajdu, F., Acta Cryst. A 28, 250 (1972).Google Scholar
19. Eggert, J. H., Weck, G. and Loubeyre, P., and Mezouar, M., Phys. Rev. B 65, 174105 (2002); Eggert, J. H., Weck, G. and Loubeyre, P., J. Phys.: Condens. Matter 14, 11385 (2002).Google Scholar
20. The 4 GPa pattern actually looks close to the structure of ice VI (1st dOO=2.83 A, coordination number CN=4; 2nd shell dOO=3.49 A, CN=8; 3rd shell dOO=3.97 A, CN=4; all 3 shells might contribute to the first ring in g(r). The calculated CN for the 4 GPa pattern is 14.1, compared to 9.2–10.2 for the higher pressure patterns. The coordination numbers have been calculated as follows: CN= ρNA/18e-3*∫0 rmin 4 πr2g(r)dr, where rmin corresponds to the minimum of g(r) after the 1st peak.Google Scholar
21. Narten, A. H. and Levy, H. A., J. Chem. Phys. 55, 2263 (1971).Google Scholar
22. Soper, A.K., Chemical Physics 258, 121 (2000).Google Scholar
23. Sorenson, J. M., Hura, G., Glaeser, R. M., Head-Gordon, T., J. Chem. Phys. 113, 9149 (2000).Google Scholar
24. Frank, M. R., Fei, Y., and Hu, J., Geochimica et Cosmochimica Acta, 68, 2781 (2004).Google Scholar
25. Belonoshko, A. and Saxena, S. K., Geochim. Cosmochim. Acta 55, 381 (1991).Google Scholar
26. Saul, A. and Wagner, W., J. Phys. Chem. Ref. Data 18, 1537 (1989).Google Scholar
27. Abramson, E. H. and Brown, J. M., Geochim. Cosmochim. Acta 68, 1827 (2004).Google Scholar
28. Mitchell, A. C. and Nellis, W. J., J. Chem. Phys. 76, 6273 (1982).Google Scholar