No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Modem quantum chemistry and molecular dynamics computer codes are powerful tools with which to study the physics and chemistry of energetic materials at the molecular level. Quantum chemistry calculations, on one or two energetic molecules, can give valuable information about the initial steps in their decomposition. Molecular dynamics calculations, even with empirical potentials, can yield important information about the physical processes involved in the initiation and growth of reaction of energetic materials. The combination of Molecular dynamics and quantum chemistry techniques offers the potential to probe energetic material reaction chemistry in real systems, in some detail, in the near future. Such an approach is vital if we are to be able to create new realistic macroscopic models within hydrocodes that can describe the initiation and growth of reaction in explosives. This paper gives an overview of the approach being adopted at DRA Fort Halstead to understanding energetic materials at the molecular level. In particular, the use of quantum chemistry and Molecular dynamics to help construct new macroscopic models will be discussed.