Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T14:02:58.976Z Has data issue: false hasContentIssue false

Pressure Isotherms of Hydrogen Adsorption in Carbon Nanostructures

Published online by Cambridge University Press:  15 March 2011

Xiaohong Chen
Affiliation:
Max Planck Institute für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Urszula Dettlaff-Weglikowska
Affiliation:
Max Planck Institute für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Miroslav Haluska
Affiliation:
Max Planck Institute für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Martin Hulman
Affiliation:
Max Planck Institute für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Siegmar Roth
Affiliation:
Max Planck Institute für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Michael Hirscher
Affiliation:
Max Planck Institute für Metallforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Marion Becher
Affiliation:
Max Planck Institute für Metallforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Get access

Abstract

The hydrogen adsorption capacity of various carbon nanostructures including single-wall carbon nanotubes, graphitic nanofibers, activated carbon, and graphite has been measured as a function of pressure and temperature. Our results show that at room temperature and a pressure of 80 bar the hydrogen storage capacity is less than 1 wt.% for all samples. Upon cooling, the capacity of hydrogen adsorption increases with decreasing temperature and the highest value was observed to be 2.9 wt. % at 50 bar and 77 K. The correlation between hydrogen storage capacity and specific surface area is discussed.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chambers, A., Park, C., Baker, R. T. K., Rodriguez, N. M., J. Phys. Chem. B102, 42534256 (1998).Google Scholar
2. Park, C., Anderson, P.E., Chambers, A., Tan, T. D., Hidalgo, R., Rodriguez, N.M., J. Phys. Chem. B103, 1057210581 (1999)Google Scholar
3. Fan, Y. Y., Liao, B., Liu, M., Wei, Y. L., Lu, M. Q., Cheng, H. M., Carbon 37, 16491652 (1999)Google Scholar
4. Gupa, B. K., Srivastava, O.N., Int J Hydrogen Energy 25, 825830 Google Scholar
5. Chen, P., Wu, X., Lin, J., Tan, K. L., Science 285, 9193 (1999)Google Scholar
6. Liu, C, Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., Dresselhaus, M.S., Science 286, 11271129 (1999)Google Scholar
7. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Klang, C. H., Bethune, D. S., Heben, M. J., Nature 386, 377379 (1997)Google Scholar
8. Yang, R. T., Carbon 38, 623641 (2000)Google Scholar
9. Hirscher, M., Becher, M., Haluka, M., Dettlaff-Weglikowska, U., Quintel, A., Duesberg, G.S., Choi, Y. M., Hulman, M., Roth, S., Stepanek, I., Bernier, P., Appl. Phys. A 72, 129132 (2001)Google Scholar
10. Tibbetts, G. G., Meisner, P. G, Olk, C. H., Carbon 39, 22912301 (2001)Google Scholar
11. Sandrock, G., Hydrogen Energy System (Kluwer Academic Publishers, Netherlands, 1995) P 135166 Google Scholar
12. Sandrock, G., J. Alloys and Compounds 293–295, 877888 (2001)Google Scholar
13. Schlapbach, L., Züttel, A., Nature 414, 353358 (2001).Google Scholar
14. Chahine, R. and Bose, T. K., Int. J. Hydrogen Energy. 164, 161 (1994)Google Scholar
15. Hirscher, M., Becher, M., Haluka, M., Quintel, A., Skakalova, V., Choi, Y. M., Dettlaff-Weglikowska, U., Roth, S., Stepanek, I., Bernier, P., Leonhardt, A., Fink, J., J. Alloys and Compounds 330–332, 654658 (2002)Google Scholar