Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T02:11:23.402Z Has data issue: false hasContentIssue false

Preparation of Optically Smooth Surfaces of High TcSuperconducting Films

Published online by Cambridge University Press:  16 February 2011

J. H. kim
Affiliation:
Stanford University, Stanford, CA 94305
A. Kapitulnik
Affiliation:
Stanford University, Stanford, CA 94305
J. S. Harris Jr
Affiliation:
Stanford University, Stanford, CA 94305
K. Char
Affiliation:
Conductus Inc., Sunnyvale, CA 94086
I. Bozovic
Affiliation:
Varian Research Center, Palo Alto, CA 94303
W. Y. Lee
Affiliation:
IBM Almaden Research Center
Get access

Abstract

We report optical studies of predominantly c-axis oriented high-Tc superconducting films before and after ion milling. A significant increase in midinfrared reflectivity resulted from ion milling of a few thousand Å Features associated with α-axis texture vanished after ion milling, resulting in pure c-axis films. This suggests that α-axis grains reside mostly near the surface in post-annealed high-Tc superconducting films. Therefore, even after annealing (for the purpose of raising Tc), highly oriented c-axis films can be retained by ion milling. This may be important for device applications where optically smooth surfaces and interfaces are to be routinely prepared.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hebard, A. F., Fleming, R. M., Short, K. T., White, A. E., Rice, C. E., Levi, A. F. J., and Eick, R. H., Appl. Phys. Lett. 55, 1915 (1989).Google Scholar
2. Char, K., Hahn, M. R., Hylton, T., Beasley, M. R., Geballe, T. H., and Kapitulnik, A., IEEE Trans. Magn. MAG-25, 2422 (1989); A. Kapitulnik and K. Char, IBM J. of R&D 33, 252 (1989).Google Scholar
3. Lee, W. Y., Lee, V. Y., Salem, J., Huang, T. C., Savoy, R., Bullock, D. C., and Parkin, S. S. P., Appl. Phys. Lett. 53, 329 (1988).Google Scholar
4. Lee, W. Y., Salem, J., Sequeda, F., Lee, V. Y., Huang, T. C., and Savoy, R., IBM Research Report RJ7113; American Institute of Physics Conf. Proc. 200, 71 (1990).Google Scholar
5. Parkin, S. S. P., Lee, V. Y., Engler, E. M., Nazzal, A. I., Huang, T. C., Gorman, G., Savoy, R., and Beyers, R., Phys. Rev. Lett. 60, 2539 (1988).Google Scholar
6. Lee, W. Y., Salem, J., Lee, V. Y., Rettner, C. T., Lim, G., Savoy, R., and Deline, V., American Institute of Physics Conf. Proc. 165, 95 (1988).Google Scholar
7. Bozovic, I., Char, K., Yoo, S. J. B., Kapitulnik, A., Beasley, M. R., Geballe, T. H., Wang, Z. Z., Hagen, S., Ong, N. P., Aspnes, D. E., and Kelly, M. K., Phys. Rev. B 38, 5077 (1988).Google Scholar
8. Collins, R. T., Schlesinger, Z., Holtzberg, F., and Feild, C., Phys. Rev. Lett. 63, 422 (1989).Google Scholar
9. Orenstein, J. and Rapkine, D. H., Phys. Rev. Lett. 60, 968 (1988).Google Scholar
10. Aspnes, D. and Kelly, M., unpublished.Google Scholar