Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T04:22:58.823Z Has data issue: false hasContentIssue false

Preparation of Intercalative Organic/MoO3 Nanohybrid Thin Films and Their VOC Gas Sensing Properties

Published online by Cambridge University Press:  01 February 2011

Ichiro Matsubara
Affiliation:
National Institute of Advanced Industrial Science and Technology, Shimo-Shidami, Moriyama-ku, Nagoya 463–8560, Japan
Norimitsu Murayama
Affiliation:
National Institute of Advanced Industrial Science and Technology, Shimo-Shidami, Moriyama-ku, Nagoya 463–8560, Japan
Woosuck Shin
Affiliation:
National Institute of Advanced Industrial Science and Technology, Shimo-Shidami, Moriyama-ku, Nagoya 463–8560, Japan
Noriya Izu
Affiliation:
National Institute of Advanced Industrial Science and Technology, Shimo-Shidami, Moriyama-ku, Nagoya 463–8560, Japan
Get access

Abstract

Organic/MoO3 nanohybrid thin films have been successfully prepared by an ex-situ intercalation process. The host MoO3 films were first deposited on LaAlO3 (LAO) single crystal substrates by using a CVD method followed by the intercalation of butylammonium ions, (BuNH3)+, into the MoO3 films to give (BuNH3)xMoO3 thin films. The preparation of highly b-axis oriented MoO3 films is crucial to prepare the (BuNH3)xMoO3 films. The (BuNH3)xMoO3 thin films exhibit a resistance-increasing response to aldehyde gases as in the case of bulk samples, whereas no response was observed for methanol, ethanol, chloroform, acetone, toluene, and xylene. The thin film process developed for intercalative organic-inorganic hybrid makes it possible to apply this material in VOC sensor devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guizard, C., Bac, A., Barboiu, M., and Hovnanian, N., Sep. Purif. Methods, 25, 167 (2001).Google Scholar
2. Walcarius, A., Chem. Mater., 13, 3351 (2001).Google Scholar
3. Kagan, C. R., Mitzi, D. B., and Dimitrakopoulos, C. D., Science, 286, 945 (1999).Google Scholar
4. Sheeney-Haj-Ichia, L., Wasserman, J., and Willner, I., Adv. Mater., 14, 1323 (2002).Google Scholar
5. Tsuru, K., Hayakawa, S., Ohtsuki, C., and Osaka, A., J. Sol-Gel Sci. Tech., 13, 237 (1998).Google Scholar
6. Goward, G. R., Kerr, T. A., Power, W. P., and Nazar, L. F., Adv. Mater., 10, 449 (1998).Google Scholar
7. Kerr, T. A., Wu, H., and Nazar, L. F., Chem. Mater., 8, 2005 (1996).Google Scholar
8. Kerr, T. A., Leroux, F., and Nazar, L. F., Chem. Mater., 10, 2588 (1998).Google Scholar
9. Nazar, L. F., Zhang, Z., and Zinkweg, D. J., J. Am. Chem. Soc., 114, 6239 (1992).Google Scholar
10. Shao, K., Ma, Y., Cao, Y., Chen, Z., Ji, X., and Yao, J., Chem. Mater., 13, 250 (2001).Google Scholar
11. Sukpirom, N., Oriakhi, C. O., and Lerner, M. M., Mater. Res. Bull., 35, 325 (2000).Google Scholar
12. Matsubara, I., Murayama, N., Shin, W., Izu, N., and Hosono, K., Bull. Chem. Soc. Jpn., 77, 1231 (2004).Google Scholar
13. Hosono, K., Matsubara, I., Murayama, N., Shin, W., and Izu, N., Chem. Mater., in press.Google Scholar
14. Liu, Z. H., Yang, X. J., Makita, Y., and Ooi, K., K. Chem. Mater., 14, 4800 (2000).Google Scholar
15. Lakshmi, B. B., Dorhout, P. K., and Martin, C. R., Chem. Mater., 9, 857 (1997).Google Scholar
16. Choy, J. H., Paek, S. M., Oh, J. M., and Jang, E. S., Curr. Appl. Phys., 2, 489 (2002).Google Scholar
17. Mitzi, D. B., Prikas, M. T., and Chondroudis, K., Chem. Mater., 11, 542 (1999).Google Scholar
18. Thomas, D. M. and McCarron, E. M., Mat. Res. Bull., 21, 945 (1986).Google Scholar
19. Ivanova, T., Surtchev, M., and Gesheva, K., Mater. Lett., 53, 250 (2002).Google Scholar
20. Lin, C. W., Hwang, B. J., and Lee, C. R., Mater. Chem. Phys. B, 107, 2619 (2003).Google Scholar