Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T15:33:44.641Z Has data issue: false hasContentIssue false

Preparation of Highly Dispersed Iron Oxide Nanoparticles in Amine-Modified SBA-15

Published online by Cambridge University Press:  15 February 2011

Bing Tan
Affiliation:
University of Kentucky, Lexington, KY 40506-0046, (U.S.A.), Email: [email protected]; Phone: +1-859-257-9799, Department of Physics and Astronomy, University of Kentucky and Department of Chemical and Materials Engineering
Wentao Xu
Affiliation:
University of Kentucky, Lexington, KY 40506-0046, (U.S.A.), Email: [email protected]; Phone: +1-859-257-9799, Department of Physics and Astronomy, University of Kentucky and Department of Chemical and Materials Engineering
Alan Dozier
Affiliation:
University of Kentucky, Lexington, KY 40506-0046, (U.S.A.), Email: [email protected]; Phone: +1-859-257-9799, Department of Physics and Astronomy, University of Kentucky and Department of Chemical and Materials Engineering
Stephen E. Rankin
Affiliation:
University of Kentucky, Lexington, KY 40506-0046, (U.S.A.), Email: [email protected]; Phone: +1-859-257-9799, Department of Physics and Astronomy, University of Kentucky and Department of Chemical and Materials Engineering
Get access

Abstract

Silica-supported iron oxide nanoparticles are prepared by precipitation within the pores of amine-functionalized SBA-15 silica. The loading of the iron oxide possible by this method is at least 11 wt%. STEM and TEM images show that the supported particles have a uniform diameter (average ∼ 4.0 nm) and are well dispersed. The supported iron oxide nanoparticles are amorphous after calcination at 300°C and, consistent with their nanoscale dimensions, are superparamagnetic at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jung, J.-S. et al. J. Magn. Magn. Mater. 272-276, 11571159 (2004).Google Scholar
2. Wong, S.-T., Lin, H.-P. and Mou, C.-Y.. Appl. Cata. A 198, 103114 (2000).Google Scholar
3. Koehn, R. and Froeba, M.. Z., Anorg. Allg. Chem. 629, 16731682 (2003).Google Scholar
4. Gupta, A. K. and Gupta, M.. Biomaterials 26, 39954021 (2005).Google Scholar
5. Echeva, G. et al. J. Non-Cryst. Solids 345-346, 615619 (2004).Google Scholar
6. Shan, Y. and Gao, L.. Mater. Chem. Phys. 89, 412416 (2005).Google Scholar
7. Zhao, D. et al. Science 279, 548552 (1998).Google Scholar
8. Barrett, E. P., Joyner, L. G. and Halenda, P. P.. J.Am.Chem.Soc. 61, 373 (1951).Google Scholar
9. Cannas, C., Musu, E., Musinu, A., Piccaluga, G. and Spano, G.. J. Non-Cryst. Solids 345&346, 653657 (2004).Google Scholar
10. Samanta, S. et al. Ind. Eng. Chem. Res. 42, 30123018 (2003).Google Scholar
11. Köhn, R. et al. Micropor. Mesopor. Mater. 63, 125137 (2003).Google Scholar
12. Ninjbadgar, T., Yamamoto, S. and Fukuda, T.. Solid State Sci. 6, 879885 (2004).Google Scholar
13. Kesavan, V. et al. Pure Appl. Chem. 73, 8591 (2001).Google Scholar
14. Hyeon, T., Lee, S. S., Park, J., Chung, Y. and Na, H. B.. J. Am. Chem. Soc. 123, 1279812801 (2001).Google Scholar
15. Morales, M. P., Veintemillas-Verdaguer, S. and Serna, C. J.. J. Mater. Res. 14, 30663072 (1999).Google Scholar
16. Morales, M. P., Andres-Verge, M., Veintemillas-Verdaguer, S. and Montero, M. I. S., C. J. J. Magn. Magn. Mater. 203, 146148 (1999).Google Scholar