No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
A preparation technique for the production of cross-sectional transmission electron microscope (TEM) samples from the interdiffusion regions of Fe-Zn binary couples is described. To alleviate the problem of unequal ion milling rates between the Fe and Zn, a 0.75mm thick Fe sheet has been double plated with a thick electrodeposited Zn coating to achieve a total couple thickness of ˜3mm. After slicing the couple in cross-section, the Fe region of the sample is dimpled to perforation near the Fe-Zn interface. Final thinning for TEM analysis is obtained by ion milling using a liquid nitrogen cold stage and sector speed control. The ion milling procedure is stopped when the perforated hole in the Fe-side of the couple extends through the faster eroding Zn-side of the interface. This technique, in modified form, is expected to be suitable for commercial steels coated with Zn-based alloys.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.