Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T05:26:18.833Z Has data issue: false hasContentIssue false

Preparation and Properties of Superconducting thin Films by Excimer Laser Ablation

Published online by Cambridge University Press:  16 February 2011

Michael E. Geusic
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
Alan F. Stewart
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
Larry R. Pederson
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
William J. Weber
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
Kenneth R. Marken
Affiliation:
Battelle-Columbus Laboratories, Columbus, OH 43201
Kin Li
Affiliation:
Boeing Aerospace & Electronics, Renton, WA. 98124-2499
Get access

Abstract

Excimer laser ablation with an in situ heat treatment was used to prepare high quality superconducting YBa2Cu3O7−x thin films on (100)-SrTiO3 and (100)-LaAlO3 substrates. A pulsed excimer laser (XeCl; 308 nm) was used to ablate a rotating, bulk YBa2Cu3O7−x target at a laser energy density of 2–3 J/cm2. Based on four-probe dc resistance measurements, the films exhibited superconducting transition temperatures (Tc, midpoint) of 88 and 87K with 2K (90–10%) transition widths for SrTiO3 and LaAlO3, respectively. Transport critical current densities (Jc) measured at 77K were 2 × 106 and 1 × 106 A/cm2 in zero field for SrTiO3 and LaAlO3, respectively. X-ray diffraction (XRD) analysis showed the films to be highly oriented, with the c-axis perpendicular to the substrate surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luborsky, F. E., Kwasnick, R. F., Borst, K., Garbauskas, M. F., Hall, E. L., and Curran, M. J., J. Appl. Phys. 64(11), 6388 (1988).Google Scholar
2. Lin, R. J., Kung, J. H., and Wu, P. T., Physica C 796, 153 (1988).Google Scholar
3. Lee, W. Y., Salem, J., Lee, V., Huang, T., Savoy, R., Deline, V., and Duran, J., Appl. Phys. Lett. 52, 2263 (1988).Google Scholar
4. Kwo, J., Hong, M., Flemming, R. H., Hsich, T. C., Liou, S. H., and Davidson, B. A., in Novel Mechanism of Superconductivity, edited by Wolf, S. A. and Kresin, V. Z. (Plenum, New York).Google Scholar
5. Webb, C., Weng, S. L., Eckstein, J. N., Missert, N., Char, K., Schlom, D. G., Hellman, E. S., Beasley, M. R., Kapitulnik, A., and Harris, J. S., Appl. Phys. Lett. 51, 1191 (1987).Google Scholar
6. Laibowitz, R. B., Koch, R. H., Chaudari, P., and Gambino, R. J., Phys. Rev. B 35, 8821 (1987).Google Scholar
7. Silver, R. M., Berezin, A. B., Wendman, M., and DeLozanne, A. L., Appl. Phys. Lett. 52, 2174 (1988).Google Scholar
8. Chang, C. C., Wu, X. D., Inam, A., Hwang, D. M., Venkatesan, T., Barboux, P., and Tarascon, J. M., Appl. Phys. Lett. 53(6), 516 (1988).Google Scholar
9. Witanachchi, S., Kwok, H. S., Wang, X. W., and Shaw, D. T., Appl. Phys. Lett. 53(3), 234 (1988).Google Scholar
10. Narayan, J., Biunno, N., Singh, R., Holland, O. W., and Auciello, O., Appl. Phys. Lett. 57, 1845 (1987).Google Scholar
11. Pederson, L. R., Weber, W. J., and Exarhos, G. J., Electronic Materials and Processes, Vol. 2, eds. Hoggatt, J. T., Jensen, W., Kushner, M., and McCollogh, S., SAMPE, Covina, CA 91722, p613.Google Scholar