Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-02T22:52:38.005Z Has data issue: false hasContentIssue false

Preparation and Properties of Inorganic-Organic Hybrids From Vinyland 3-Methacryloxypropyltrimethoxysilane

Published online by Cambridge University Press:  10 February 2011

N. Takamura
Affiliation:
Department of Industrial Chemistry, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278–8510, Japan
T. Gunji
Affiliation:
Department of Industrial Chemistry, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278–8510, Japan
Y. Abe
Affiliation:
Department of Industrial Chemistry, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278–8510, Japan
Get access

Abstract

The organic-inorganic polymer hybrids consisting of carbon-carbon and siloxane chains were prepared by radical polymerization of vinyltrimethoxysilane (VTS) and 3-methacryloxypropyltrimethoxysilane (MAS) followed by hydrolytic polycondensation. Polyvinyltrimethoxysilane (PVTS) and poly(3-methacryloxypropyltrimethoxysilane) (S-PMA) with various molecular weights Mw=3900–64800 were prepared by polyaddition of VTS and MAS, respectively. PVTS and S-PMA provided transparent and flexible free-standing films and coating films. With increasing carbon-carbon chain length, the elasticity of the films increased, while the tensile strength and Young's modulus decreased. The adhesive strength of the coating films on organic substrates was particularly dependent on the solubility parameter, polarity and crystallinity of each substrate. The pencil-hardness of coating films was clearly increased with increasing degree of condensation of sila-functional group in PVTS and S-PMA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laine, R. M., Rahn, J. A., Youngddahl, K. A., Babonneau, F., Hoppe, M. L, Zhang, Z. F., and Harrod, J. F., Chem. Mater., 2, p. 464 (1990).10.1021/cm00010a028Google Scholar
2. Sellinger, A. and Laine, R. M., Polym. Prepr. 35, p. 665 (1994).Google Scholar
3. Abe, Y., Taguchi, K., Hatano, H., Gunji, T., Nagao, Y., and Misono, T., J. Sol-Gel Sci. Technol., 2, p.131 (1994).10.1007/BF00486226Google Scholar
4. Hoebbel, D., Endres, K., Reinert, T. and Pitsch, I., J. Non-Crystal. Solids, 174, p. 179 (1994).10.1016/0022-3093(94)90076-0Google Scholar
5. Zhang, Z., Tanigami, Y., and Terai, R., J. Non-Crystal. Solids, 191, p. 304 (1995).10.1016/0022-3093(95)00316-9Google Scholar
6. Baney, R. H., Itoh, M., Sakakibara, A., and Suzuki, T., Chem. Revs., p. 1409 (1995).10.1021/cr00037a012Google Scholar
7. Joseph, R., Zhang, S., and Ford, W. T., Macromolecules, 29, p. 1305 (1996).10.1021/ma951111zGoogle Scholar
8. Millar, J. R., J. Chem. Soc., 121, p. 1311 (1960).10.1039/JR9600001311Google Scholar
9. Schmidt, H., and Wolter, H., J. Non-Crystal. Solids 121, p. 428 (1990).10.1016/0022-3093(90)90171-HGoogle Scholar
10. Ellsworth, M. W. and Novak, B. M., Chem. Mater., 5, p. 839 (1993).10.1021/cm00030a020Google Scholar
11. Novak, B. M., Auerbach, D. and Verrier, C., Chem. Mater., 6, p. 282 (1994).10.1021/cm00039a006Google Scholar
12. Otsu, T., Endo, K., and Tanaka, M. Mem. Fac. Eng., Osaka City Univ., 29, p. 151 (1988).Google Scholar
13. Stober, M. R., Michael, K. W., and Speier, J. L., J. Org. Chem., 32, p. 2740 (1967).10.1021/jo01284a021Google Scholar
14. Bajaj, P., Khanna, Y. P., and Babu, G. N., J. Polym. Sci. Polym. Chem. Ed., 14, p. 465 (1975).10.1002/pol.1976.170140217Google Scholar
15. Billingham, N. C., Jenkins, A. D., Karonfli, E. B., and Walton, D. R. M., J. Polym. Sci. Polym. Chem. Ed., 16, p. 683 (1977).10.1002/pol.1977.170150315Google Scholar
16. Babu, G. N., Atodaria, D. R., and Deshpande, A., Eur. Polym. J., 17, p. 427 (1981).10.1016/0014-3057(81)90148-8Google Scholar
17. Bajaj, P., and Nanababu, G., Eur. Polym. J., 12, p. 601 (1976).10.1016/0014-3057(76)90023-9Google Scholar
18. Magner, G. H., Bailey, D. L., Pines, A. N., Bunham, M. L., and Mclntiare, D. B., Ind. Eng. Chem., 45, p. 367 (1953).Google Scholar
19. Mixer, P. Y. and Bailey, D. L., J. Polym. Sci., 18, p. 573 (1995).10.1002/pol.1955.120189013Google Scholar
20. Young, L. J., J. Polym. Sci., 54, p. 411 (1961).10.1002/pol.1961.1205416011Google Scholar
21. Scott, C. E. and Proce, C. C., J. Am. Chem. Soc., 81, p. 2670 (1959).10.1021/ja01520a019Google Scholar
22. Bailey, D. L., J. Polym. Sci., 22, p. 55 (1956).Google Scholar
23. Sakurai, H., Tominaga, K., and Kumada, M., Bull. Chem. Soc. Jpn., 39, p. 1279 (1966).10.1246/bcsj.39.1279Google Scholar
24. Kendall, K., J. Phys. D, 4, p. 1186(1971).10.1088/0022-3727/4/8/320Google Scholar
25. Abe, Y., Honda, Y., and Gunji, T., Appl. Organometal. Chem., 12, p. 1 (1998).10.1002/(SICI)1099-0739(199810/11)12:10/11<749::AID-AOC782>3.0.CO;2-23.0.CO;2-2>Google Scholar
26. Fedors, R. F., Polym. Eng. Sci., 14, p. 147 (1974).10.1002/pen.760140211Google Scholar