Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:23:25.476Z Has data issue: false hasContentIssue false

Preparation and Applications of Lead Chalcogenide Diode Lasers

Published online by Cambridge University Press:  25 February 2011

Dale L. Partin*
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, MI 48090-9055
Get access

Abstract

Lead chalcogenide diode lasers are useful for spectroscopic and fiber optics applications in the mid-infrared (2.5-30 μm) wavelength range. These devices have previously required cryogenic cooling (<100 K) for CW operation. This limitation has been overcome through the use of a new, lattice-matched alloy system, Pb1-xEuxSeyTe1-y as well as the introduction of advanced, quantum well active region device structures grown by molecular beam epitaxy (MBE). Operating temperatures have been increased to 175 K CW (at 4.4 μm) and to 270 K pulsed (at 3.9 μm). Thermal leakage currents out of the device active region appear to be limiting device performance. This has led to the study of band offsets in PbEuSeTe/PbTe heterojunctions as well as to exploration of alternative high energy band gap alloys of PbTe with Ge, Yb, Ca, Sr, and Ba. The status of this work and examples of ultrahigh resolution studies done with these tunable laser sources will be included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Preier, H., Appl. Phys. 20, 189 (1979).Google Scholar
2. Harman, T. C., J. Phys. rhem. Solids 32, 363 (1971).Google Scholar
3. Calawa, A. R., J. Luminescence 7, 477(1973).CrossRefGoogle Scholar
4. Holloway, H. and Walpole, J. N., Prog. in Cryst. Growth and Charact. 2, 49 (1979).Google Scholar
5. Linden, K. J., SPIE Conf. on Tunable Diode Laser Development and Spectroscopy Applications 438, 2 (1983).Google Scholar
6. Preier, H., Bleicher, M., Riedel, W., and Maier, H., J. Appl. Phys. 47, 5476 (1976).CrossRefGoogle Scholar
7. Linden, K. J., Nill, K. W., and Butler, J. F., IEEE J. Quant. Electron. QE–13, 720 (1977).CrossRefGoogle Scholar
8. Partin, D.T., J. Electron. Mater., 13, 493 (1984).Google Scholar
9. Partin, D. L. and Thrush, C. M., Appl. Phys. Lett. 45, 193 (1984).Google Scholar
10. Partin, D. L., Appl. Phys. Lett. 43, 996 (1983).Google Scholar
11. Partin, D. L., Optical Engrg. 24, 367 (1985).Google Scholar
12. Partin, D. L., Appl. Phys. Lett. 45, 487 (1984).Google Scholar
13. Partin, D. L., Majkowski, R. F., and Swets, D. E., J. Vac. Sci. Technol. B 3, 576 (1985).Google Scholar
14. Partin, U. L., Superlattices and Microstructures 1, 131 (1985).CrossRefGoogle Scholar
15. Partin, D. L., Heremans, J., and Thrush, C. M., Superlattices and Microstructures (to be published).Google Scholar
16. Norton, P., Knoll, G., and Bachem, K. H., J. Vac. Sci. Technol. B 3, 782 (1985).CrossRefGoogle Scholar
17. Lax, B. (private communication).Google Scholar
18. Heremans, J., Partin, D. L., Shayegan, M. and Drew, H. D., Proc. 18th International Conference on the Physics of Semiconductors, O., Engstrom (ed.), World Scientific Publishing Co. PTE, Ltd, Singapore, Aug. 11–15, 1986.Google Scholar
19. Goltsos, W. C., Nurmikko, A. V., and Partin, D. L., Sol. St. Comm. 59, 183 (1986).Google Scholar
20. Rosenberg, A. J., Grierson, R., Wooley, J. C., and Nikolic, P., Trans. Met. Soc. AIME 230, 342 (1964).Google Scholar
21. Vanyarkho, V. G., Zlomanov, V. P., and Novoselova, A. V., Inorg. Mat. 6, 1352 (1970).Google Scholar
22. Hohnke, D. K., Holloway, H., and Kaiser, S., J. Phys. Chem. Solids 33, 2053 (1972).CrossRefGoogle Scholar
23. Silbeg, E., Sternburg, Y., and Yellin, N., J. Solid State Chem. 39, 100 (1981).CrossRefGoogle Scholar
24. Andrianov, D. G., Pavlov, N. M., Savelev, A. S., Fistul, V. I. and Tsiskarishvili, G. P., Soc. Phys. Semi. 14, 711 (1980).Google Scholar
25. Partin, D. L., J. Vac. Sci. Technol. 21, 1 (1982).Google Scholar
26. Alekseeva, G. T., Vinogradova, M. N., Gartsman, R. G., Zyuzin, A. Yu., Mailina, Kh. R., Prokofeva, L. V., and Stilbans, L. S., Sov. Phys. Sol. St. 27, 1953 (1985).Google Scholar
27. Suryanarayanan, R. and Paparoditis, C., J. Phys. 29, C4 (1968).Google Scholar
28. Paparoditis, C. and Suryanarayanan, R., J. Cryst.Growth 13/14, 389 (1972).Google Scholar
29. Suryanarayanan, R. and Paparoditis, C., Colloq. Int. C.N.R.S., No. 180, 149 (1969).Google Scholar
30. Partin, D. L., J. Vac. Sci. Technol. B 1, 174 (1983).CrossRefGoogle Scholar
31. Partin, D. L., J. Electron. Mater. 12, 917 (1983).CrossRefGoogle Scholar
32. Partin, D. L., Optical Engrg. 24, 367 (1985).Google Scholar
33. Jayaraman, A., in: Handbook on the Physics and Chemistry of Rare Earths, ed. Gschneidner, K. A. Jr. and Eyring, L., North Holland Publ., New York, p. 575 ff (1979).Google Scholar
34. Rogers, L. M. and Crocker, A. J., J. Phys. D 4, 1016 (1971).Google Scholar
35. Holloway, H. and Jesion, G., Phys. Rev. B 26, 5617 (1982).Google Scholar
36. Partin, D. L., Clemens, B. M., Swets, D. E., and Thrush, C. M., J. Vac. Sci. Technol. B4, 578 (1986).Google Scholar
37. Partin, D. L., Thrush, C. M., Clemens, B. M., (to be published).Google Scholar
38. Koguchi, N., Kiyosawa, T., and Takahashi, S., Fourth Int'l Conf. on Molecular Beam Epitaxy, York, U.K., 9 Sept. 1986.Google Scholar
39. Lopez-Otero, A. and Huber, W., Surface Science 86, 167 (1979).Google Scholar
40. Humenberger, J., Sitter, H., Huber, W., Sharma, N. C., and Lopez-Otero, A., Thin Solid Films 90, 101 (1982).CrossRefGoogle Scholar
41. Takagi, T., Takaoka, H., and Kuriyama, Y., Thin Solid Films 126, 149 (1985).CrossRefGoogle Scholar
42. Yamada, I., Takaoka, H., Usui, H., and Takagi, T., J. Vac. Sci. Technol. A 4, 722 (1986).Google Scholar
43. Yoshino, J., Munekata, H., and Chang, L. L., Seventh U.S. MBE Workshop, Amer. Vac. Soc., Cambridge, MA, 20 Oct. 1986.Google Scholar
44. Freed, C., Bielinski, J. W., and Lo, W., Appl. Phys. Lett. 43, 629 (1983).Google Scholar
45. Hoell, J. M. Jr., Harward, C. N., and Lo, W., Optical Engrg. 21, 320 (1982).Google Scholar
46. Labrie, D. and Reid, J., Appl. Phys. 24, 381 (1981).CrossRefGoogle Scholar
47. Lee, P. S. and Majkowski, R. F., Appl. Phys. Lett. 48, 619 (1986).Google Scholar
48. Lambert, D. K., Proc. Soc. Photo-Optical Inst. Eng. 438, 158 (1983).Google Scholar
49. Lambert, D. K., J. Vac. Sci. Technol. B 3, 1479 (1985).CrossRefGoogle Scholar
50. Miyashita, T. and Manabe, T., IEEE J. Quant. Elec. QE–18, 1432 (1982).Google Scholar
51. Tran, D. C., Sigel, G. H. Jr, and Bendow, B., J. Lightwave Technol. LT–2, 566 (1984).Google Scholar