Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T12:04:08.907Z Has data issue: false hasContentIssue false

Preliminary Investigation of a Sacrificial Process for Fabrication of Polymer Membranes with Sub-Micron Thickness

Published online by Cambridge University Press:  22 January 2014

Luke A. Beardslee
Affiliation:
SUNY College of Nanoscale Science & Engineering, Albany NY.
Dimitrius A. Khaladj
Affiliation:
SUNY College of Nanoscale Science & Engineering, Albany NY.
Magnus Bergkvist
Affiliation:
SUNY College of Nanoscale Science & Engineering, Albany NY.
Get access

Abstract

Here we present a single mask sacrificial molding process that allows ultrathin 2-dimensional membranes to be fabricated using biocompatible polymeric materials. For initial investigations, polycaprolactone (PCL) was chosen as a model material. The process is capable of creating 250-500 nm thin, through-hole PCL membranes with various geometries, pore-sizes and spatial features approaching 2.5 micrometers using contact photolithography. The technique uses a mold created from two layers of lift-off resist (LOR). The upper layer is patterned, while the lower layer acts as a sacrificial release layer for the polymer membrane. For mold fabrication, photoresist on top of the layers of lift-off resist is patterned using conventional photolithography. During development the mask pattern is transferred onto the first LOR layer and the photoresist is removed using acetone, leaving behind a thin mold. The mold is filled with a solution of the desired polymer. Subsequently, both the patterned and lower LOR layers are dissolved by immersion in an alkaline solution. The membrane can be mounted onto support structures pre-release to facilitate handling.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yurchenco, P. D., Cold Spring Harbor Perspectives in Biology, 3, a004911, (2012).Google Scholar
LeBleu, V. S., MacDonald, B. and Kalluri, R., Experimental Biology and Medicine, 232, 1121, (2007).CrossRefGoogle Scholar
James, A. L., Maxwell, P. S., Pearce-Pinto, G., Elliot, J. G. and Carroll, N. G., American Journal of Respiratory and Critical Care Medicine, 166, 1590, (2002).CrossRefGoogle Scholar
Osawa, T., Onodera, M., Feng, X. Y. and Nozaka, Y., Journal of Electron Microscopy, 52, 435, (2003).CrossRefGoogle Scholar
Kumbar, S. G., James, R., Nukavarapu, S. P. and Laurencin, C. T., Biomedical Materials, 3, 034002, (2008).CrossRefGoogle Scholar
Xiao, W., He, J., Nichol, J. W., Wang, L., Hutson, C. B., Wang, B., Du, Y., Fan, H. and Khademhosseini, A., Acta Biomaterialia, 7, 2384, (2011).CrossRefGoogle Scholar
Schlichting, K. E., Copeland-Johnson, T. M., Goodman, M., Lipert, R. J., Prozorov, T., Liu, X., McKinley, T. O., Lin, Z., Martin, J. A. and Mallapragada, S. K., Acta Biomaterialia, 7, 3094, (2011).CrossRefGoogle Scholar
Hayek, A., Xu, Y., Okada, T., Barlow, S., Zhu, X., Moon, J. H., Marder, S. R. and Yang, S., Journal of Materials Chemistry, 18, 3316, (2008).CrossRefGoogle Scholar
Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H.-S., Oh, J.-S., Akaike, T. and Cho, C.-S., Biomaterials, 24, 801, (2003).CrossRefGoogle Scholar
Lin, C.-C., Raza, A. and Shih, H., Biomaterials, 32, 9685, (2011).CrossRefGoogle Scholar
Neeley, W. L., Redenti, S., Klassen, H., Tao, S., Desai, T., Young, M. J. and Langer, R., Biomaterials, 29, 418, (2008).CrossRefGoogle Scholar
Sodha, S., Wall, K., Redenti, S., Klassen, H., Young, M. J. and Tao, S. L., Journal of Biomaterials Science, Polymer Edition, 22, 443, (2011).CrossRefGoogle Scholar
Vozzi, G., Flaim, C. J., Bianchi, F., Ahluwalia, A. and Bhatia, S., Materials Science and Engineering: C, 20, 43, (2002).CrossRefGoogle Scholar
Nagstrup, J., Keller, S., Almdal, K. and Boisen, A., Microelectronic Engineering, 88, 2342, (2011).CrossRefGoogle Scholar
Shayan, G., Felix, N., Cho, Y., Chatzichristidi, M., Shuler, M. L., Ober, C. K. and Lee, K. H., Tissue Engineering: Part C, 18, 667, (2012).CrossRefGoogle Scholar
Moeller, H.-C., Mian, M. K., Shrivastava, S., Chung, B. G. and Khademhosseini, A., Biomaterials, 29, 752, (2008).CrossRefGoogle Scholar
Claeyssens, F., Hasan, E. A., Gaidukeviciute, A., Achilleos, D. S., Ranella, A., Reinhardt, C., Ovsianikov, A., Shizhou, X., Fotakis, C., Vamvakaki, M., Chichkov, B. N. and Farsari, M., Langmuir, 25, 3219, (2009).CrossRefGoogle Scholar
Linder, V., Gates, B. D., Ryan, D., Parviz, B. A. and Whitesides, G. M., Small, 1, 730, (2005).CrossRefGoogle Scholar
Ainslie, K. M. and Desai, T. A., Lab on a Chip, 8, 1864, (2008).CrossRefGoogle Scholar
Torrejon, K. Y., Pu, D., Bergkvist, M., Danias, J., Sharfstein, S. T. and Xie, Y., Biotechnology and Bioengineering, 110, 3205, (2013).CrossRefGoogle Scholar