Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:06:16.489Z Has data issue: false hasContentIssue false

Prediction of the radiative properties of reconstructed alpha-SiC foams used for concentrated solar applications

Published online by Cambridge University Press:  08 October 2013

Benoit Rousseau
Affiliation:
CNRS UMR 6607, LTN, rue Christian Pauc, 44306 Nantes, France
Simon Guevelou
Affiliation:
CNRS UMR 6607, LTN, rue Christian Pauc, 44306 Nantes, France
Gilberto Domingues
Affiliation:
CNRS UMR 6607, LTN, rue Christian Pauc, 44306 Nantes, France
Jerome Vicente
Affiliation:
CNRS UMR 7343, IUSTI, 5 rue Enrico Fermi, 13453 Marseille, France
Cyril Caliot
Affiliation:
CNRS UPR 8521, PROMES, 7 rue de Four Solaire, 66120 Font Romeu Odeillo, France
Gilles Flamant
Affiliation:
CNRS UPR 8521, PROMES, 7 rue de Four Solaire, 66120 Font Romeu Odeillo, France
Get access

Abstract

A SiC-based ceramic foam applied in solar thermal processes was characterized in detail in terms of its textural parameters and its radiative properties. Scanning electron microscopy and x-ray µ-tomography were first performed to investigate the 3D texture of the sample at several length scales. Infrared reflectance microscopy was also applied to probe the local optical responses on the struts constituting the foam. Based on the whole set of experimental data, a numerical tool (C++) was implemented to reconstruct virtual SiC foams. A Monte Carlo Ray Tracing code (iMorphRad, C++) was then used to compute the normal spectral emittance for the real SiC foam and for another reconstructed SiC foam with similar textural features. The two numerically determined emittances were then compared with previous infrared spectroscopy experimental measurements. This numerical procedure enables us to propose a methodology for the design of SiC foams with prescribed radiative properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sano, Y., Iwase, S., and Nakayama, A., A Local Thermal Nonequilibrium Analysis of Silicon Carbide Ceramic Foam as a Solar Volumetric Receiver. Journal of Solar Energy Engineering, 2012. 134: p. 021006.CrossRefGoogle Scholar
Wu, Z., et al. ., Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances. International Journal of Heat and Mass Transfer, 2011. 54(7): p. 15271537.CrossRefGoogle Scholar
Haussener, S., et al. ., Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing. Journal of Heat Transfer, 2010. 132: p. 023305.CrossRefGoogle Scholar
Lata, J.M., Rodríguez, M., and de Lara, M., High Flux Central Receivers of Molten Salts for the New Generation of Commercial Stand-Alone Solar Power Plants. Journal of Solar Energy Engineering, 2008. 130(2): p. 021002/1-5.CrossRefGoogle Scholar
Gazulla, M., et al. ., Physico-chemical characterisation of silicon carbide refractories. Journal of the European Ceramic Society, 2006. 26(15): p. 34513458.CrossRefGoogle Scholar
Jorgensen, P.J., Wadsworth, M.E., and Cutler, I.B., Oxidation of silicon carbide. Journal of the American Ceramic Society, 1959. 42(12): p. 613616.CrossRefGoogle Scholar
Ervin, G Jr., Oxidation behavior of silicon carbide. Journal of the American Ceramic Society, 1958. 41(9): p. 347352.CrossRefGoogle Scholar
Vaughn, W.L. and Maahs, H.G., Active-to-Passive Transition in the Oxidation of Silicon Carbide and Silicon Nitride in Air. Journal of the American Ceramic Society, 1990. 73(6): p. 15401543.CrossRefGoogle Scholar
Luthra, K.L., Some new perspectives on oxidation of silicon carbide and silicon nitride. Journal of the American Ceramic Society, 1991. 74(5): p. 10951103.CrossRefGoogle Scholar
Spitz, J., et al. ., Matériaux sélectifs pour la conversion photothermique de l'énergie solaire. Revue de Physique Appliquée, 1979. 14(1): p. 6780.CrossRefGoogle Scholar
Brun, E. and Vicente, J.. Volumetric segmentation of trabecular bone into rods and plates: a new method based on local shape classification. in SPIE Medical Imaging. 2010: International Society for Optics and Photonics.Google Scholar
Sermesant, M., et al. ., An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology, in Functional Imaging and Modeling of the Heart. 2007, Springer. p. 160169.CrossRefGoogle Scholar
Spanier, J.E. and Herman, I.P., Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Physical Review B, 2000. 61(15): p. 10437.CrossRefGoogle Scholar
Gervais, F., Optical conductivity of oxides. Materials Science and Engineering: R: Reports, 2002. 39(2-3): p. 2992.CrossRefGoogle Scholar
Bruggeman, D.A.G., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen:. Annalen der Physiks, 1935. 24: p. 636679.CrossRefGoogle Scholar
Siegel, R. and Howell, J.R., Thermal Radiation Heat Transfer 4 edition ed. 2001: Taylor & Francis.Google Scholar