Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T02:38:52.832Z Has data issue: false hasContentIssue false

Prediction of Charge Transport Properties of Molecular Materials by Ab Initio Molecular Orbital Calculations

Published online by Cambridge University Press:  21 March 2011

Wataru Sotoyama
Affiliation:
Materials & Material Engineering Laboratories, Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-0197, Japan
Tomoaki Hayano
Affiliation:
Materials & Material Engineering Laboratories, Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-0197, Japan
Hiroyuki Sato
Affiliation:
Materials & Material Engineering Laboratories, Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-0197, Japan
Azuma Matsuura
Affiliation:
Materials & Material Engineering Laboratories, Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-0197, Japan
Toshiaki Narusawa
Affiliation:
Materials & Material Engineering Laboratories, Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-0197, Japan
Get access

Abstract

We developed a method to predict the charge transport (CT) type (hole or electron) in molecular materials that uses molecular orbital calculations. The hole-and-electron-mobility ratios of molecular materials were calculated based on molecular structural reorganization energies in a charge hopping process. The CT types predicted from the calculated mobility ratios agreed with those experimentally obtained in seven of the eight model molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pacansky, J., Waltman, R. J., and Seki, H., Bull. Chem. Soc. Jpn. 70, 55 (1997).Google Scholar
2. Curioni, A., Boero, M., and Andreoni, W., Chem. Phys. Lett. 294, 263 (1998).Google Scholar
3. Sakanoue, K., Motoda, M., Sugimoto, M., and Sakaki, S., J. Phys. Chem. A 103, 5551 (1999).Google Scholar
4. Malagoli, M. and Brédas, J. L., Chem. Phys. Lett. 327, 13 (2000).Google Scholar
5. Zhang, R. Q., Lee, C. S., and Lee, S. T., Appl. Phys. Lett. 75, 2418 (1998); J. Chem. Phys. 112, 8614 (2000); Chem. Phys. Lett. 326, 413 (2000).Google Scholar
6. Holstein, T., Ann. Phys. 8, 325 (1959); 8, 343 (1959).Google Scholar
7. Emin, D., in Electronic and Structural Properties of Amorphous Semiconductors, edited by Comber, P. G. Le and Mort, J. (Academic Press, London and New York, 1973), p. 261.Google Scholar
8. Marcus, R. A., J. Chem. Phys. 43, 679 (1965).Google Scholar
9. Newton, M. D. and Sutin, N., Ann. Rev. Phys. Chem. 35, 437 (1984).Google Scholar
11. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A. Jr., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., and Pople, J. A., Gaussian 98, Revision A.6, Gaussian, Inc., Pittsburgh PA, 1998.Google Scholar
12. Binkley, J. S., Pople, J. A., and Hehre, W. J., J. Am. Chem. Soc. 102, 939 (1980); M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, 104, 2797 (1982).Google Scholar
13. Stolka, M., Yanus, J. F., and Pai, C. M., J. Phys. Chem. 88, 4707 (1984).Google Scholar
14. Shirota, Y., Kuwabara, Y., Inada, H., Wakimoto, T., Nakada, H., Yonemoto, Y., Kawami, S., and Imai, K., Appl. Phys. Lett. 65. 807 (1994).Google Scholar
15. Kepler, R. G., Beeson, P. M., Jacobs, S. J., Anderson, R. A., Sinclair, M. B., Valencia, V. S., and Cahill, P. A., Appl. Phys. Lett. 66, 3618 (1995)Google Scholar
16. Adachi, C., Tsutsui, T., and Saito, S., Appl. Phys. Lett. 55, 1489 (1989).Google Scholar
17. Kido, J., Ohtaki, C., Hongawa, K., Okuyama, K., and Nagai, K., Jpn. J. Appl. Phys. 32, L917 (1993).Google Scholar
18. Hamada, Y.. Sano, T.. Fujita, M.. Fujii, T., Nishio, Y., and Shibata, K., Chem. Lett. 905 (1993).Google Scholar
19. Kijima, Y., Asai, N., and Tamura, S., MRS -98 Spring Meeting, G2.1 (1998).Google Scholar
20. Pai, C. M., Yanus, J. F., and Stolka, M., J. Phys. Chem. 88, 4714 (1984).Google Scholar
21. Klöpffer, W., J. Chem. Phys. 50, 2337 (1969).Google Scholar