Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:45:33.044Z Has data issue: false hasContentIssue false

Precision of Non-invasive Temperature Measurement by Diffuse Reflectance Spectroscopy

Published online by Cambridge University Press:  15 February 2011

Zhongze Wang
Affiliation:
Department of Electrical Engineering, University of Washington, Seattle, Washington, 98195, [email protected]
Siu L. Kwan
Affiliation:
Department of Electrical Engineering, University of Washington, Seattle, Washington, 98195, [email protected]
T. P. Pearsall
Affiliation:
Department of Electrical Engineering, University of Washington, Seattle, Washington, 98195, [email protected]
James Booth
Affiliation:
Thermionics, NW, Port Townsend, Washington, 98368
Barrett T. Beard Jr.
Affiliation:
Thermionics, NW, Port Townsend, Washington, 98368
Shane R. Johnson
Affiliation:
Deaprtment of Physics, University of British Columbia, Vancouver B.C. V6T IZ 1, Canada
Get access

Abstract

We demonstrate the use of diffuse reflectance spectroscopy as a non-invasive probe for measurement of temperature in real time on Si and GaAs substrates during semiconductor processing. Our results show that the standard deviation of the non-invasive optical technique is less than 0.7 °C for GaAs over the temperature range 50 °C < T< 600 °C with 5-second updates. These results support the notion that non-invasive optical temperature measurement can be used in semiconductor processing with a precision exceeding that of a thermocouple.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearsall, T.P., Proc. Symp. Tech. and Proc. of Compound Semiconductors SOTAPOCS XX, vol. 94–18 (Pennington, ElectroChem Soc. (1995) pp. 286.Google Scholar
2. Pearsall, T.P.. Saban, S.R.. Booth, J.. Beard, B.T. Jr,. and Johnson, S.R.. Rev. Sci Instruments 66, 4977 (1995).Google Scholar
3. Boebel, F.G. and Moller, H., Proc. IEEE/SEMI Advanced Semiconductor Manufacturing Conference p. 67, (1992).Google Scholar
4. Peuse, B. and Rosekrans, A., Mat Res. Symp. 303, 125 (1993).Google Scholar
5. Voorhees, D.W. and Hall, D.M., Proc. SPIE 1595, 61 (1991).Google Scholar
6. Conrad, K.A., Sampson, R.K., Massoud, H.Z., and Irene, E.A., J. Vac. Sci. Tech. B 11, 2096 (1993).Google Scholar
7. Hansen, G.P., Krishnan, S. Hauge, R.H., and Margrave, J.L., Appl. Optics 28, 1885 (1989).Google Scholar
8. Katzer, D.S. and Shanabrook, B.V., J. Vac Sci. Tech B. 11 103, (1993).Google Scholar
9. Malam, S.C., Pell, T., and Nix, R.M., J. Vac Sci Tech A 12, 2938 (1994).Google Scholar
10. Wright, D.R., Clark, W.D., Hartman, D.C., Sridharan, U.C., Kent, M., and Kerns, R., Proc. SPIE 1803, 321 1993.Google Scholar
11. Hellman, E.S. and Harris, J.S. Jr, J. Crystal Growth 81, 38 (1986).Google Scholar
12. Weilmeier, M.K., Colbow, K.M., Tiedje, T., Buuren, T. van, and Xu, Li, Can. J. Phys. 69, 422 (1991).Google Scholar
13. Adel, M.E., Ish-Shalom, Y., Mangan, S., Carlo, D., and Gilboa, H., Proc. SPIE 1803, 290 (1992).Google Scholar
14. Johnson, S.R., Lavoie, C., Tiedje, T, and Mackenzie, J.A., J. Vac Sci. Tech, B11 1007 (1993).Google Scholar
15. Johnson, SR., Lavoie, C., Nissen, M. K., and Tiedje, T., US Patent 5,388,909 (1995).Google Scholar
16. Companion, A.L., ”Applications of Diffuse Reflectance Spectroscopy”, in Developments in Applied Spectroscopy 4, ed. Davis, E.N. (Plenum, New York, 1965) p221.Google Scholar
17. Varshni, Y.P., Physica 34, 149 (1967).Google Scholar
18. Thurmond, C.D., J. Electrochem Soc. 122, 1133 (1975).Google Scholar
19. Aspnes, D.E. and Studna, A.A., J. Vac. Sci. Tech A 5, 546 (1987).Google Scholar
20. Aspnes, D.E. J. Opt. Soc. Am. A 10, 974 (1990).Google Scholar