Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:22:15.910Z Has data issue: false hasContentIssue false

Precipitate and Defect Formation in Oxygen Implanted Silicon-on-Insulator Material

Published online by Cambridge University Press:  28 February 2011

S.J. Krause
Affiliation:
Department of Chemical, Bio, and Materials Engineering, Arizona State University, Tempe, AZ 85287
C.O. Jung
Affiliation:
Department of Chemical, Bio, and Materials Engineering, Arizona State University, Tempe, AZ 85287
T.S. Ravi
Affiliation:
Department of Chemical, Bio, and Materials Engineering, Arizona State University, Tempe, AZ 85287
S.R. Wilson
Affiliation:
Bipolar Technology Center, Semiconductor Products Sector, Motorola, Inc., Mesa, AZ 85036
D.E. Burke
Affiliation:
Department of Electrical Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

The formation and structure of defects and precipitates in high-dose oxygen implanted silicon-on-insulator material was directly studied by weak beam and high resolution electron microscopy. In as-implanted material, the edge of the oxygen implant profile contained 1.5 nm diameter precipitates at a density of 1019 cm2. Defects, including micrctwins, stacking faults, and (311) defects, were present in as-implanted material but no threading or loop dislocations were observed. This suggests that threading dislocations are formed in the thermal ramping and annealing cycle. In material annealed for different times and temperatures precipitate size was much more dependent on peak temperature rather than time-at-temperature indicating that oxygen diffusion distance is less important than thermodynamic factors in controlling precipitate size. Annealing from 1150°C to 1250°C produced threading dislocations and possible dislocation dipoles which extended through the superficial layer. Transient annealing of very low dose oxygen implanted Si produced loop and threading dislocations. This suggests that a high heating rate during precipitation will generate excess Si interstitials at a rate high enough to create high stresses at precipitates and form dislocations. A qualitative model for dislocation formation is proposed and processing conditions for reducing dislocation density are suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ruffell, J. P., Douglas-Hamilton, D.H., Kaim, R.E., and Izumi, K., Nucl. Inst. Meths, B21,229 (1987).Google Scholar
2 Izumi, K., Doken, M., and Ariyoshi, H., Electronics Letters, 14, 593 (1978).CrossRefGoogle Scholar
3 Pinizotto, R.F., Mat. Res. Soc. Symp. Proc., 27,265 (1984).Google Scholar
4 Cristoloveanu, S., Gardner, S., Jaussaud, C., Margail, J., Auberton-Herve, A.J. and Bruel, M., J. Appl. Phys., 62,2793(1987).CrossRefGoogle Scholar
5 Whitfield, J., Varker, C., Chan, S., Wilson, S., Carpenter, R., Krause, S., and Weber, E., SPIE, 623, 83 (1987).Google Scholar
6 Stoemenos, J., Jaussaud, C., Bruel, M., and Margail, J., J. Cryst. Growth, 73, 546 (1985).Google Scholar
7 Jaussaud, C., Stoemenos, J., Margail, J., Dupuy, M., and Bruel, M., Appl. Phys. Lett., 46, 1064 (1985).CrossRefGoogle Scholar
8 Cellar, G. K., Hemment, P.L.F., West, K.W., and Gibson, J.M., Appl. Phys. Lett., 42,532 (1986).CrossRefGoogle Scholar
9 Mao, B. Y., Chang, P.H., Lam, H.W., Chen, B. W., & Keenan, J., Appl. Phys. Lett., 48, 794 (1986).Google Scholar
10 Mogro-Campero, A., Love, R.P., Lewis, N., Hall, E., and McDonnell, M., J. Appl. Phys., 60, 2103 (1986).CrossRefGoogle Scholar
11 Augustus, P.D., Kightley, P., and Alderman, J., 5th Oxford Conf. Semic, in Inst. Phys. Conf. Ser., 1987 Google Scholar
12 Hill, D., Fraundorf, P., and Fraundorf, G., IEEE SOS/SOI Tech. Abst.,Durango, Colorado, 1987.Google Scholar
13 van Ommen, A. H. and Viegers, P.A., 5th Oxford Conf. Semicond., in Inst. Phys. Conf. Ser., 1987.Google Scholar
14 MacElwee, T.W. and Calder, I.D., IEEE SOS/SOI Tech. Abst.,Durango, Colorado, 1987.Google Scholar
15 Maszara, W.P., to be published in Mat. Res. Soc. Symp. Proa, Boston Ma.,1987.Google Scholar
16 Wilson, I.H., Nucl. Inst. Meths. in Phys. Research, B1 331 (1984).Google Scholar
17 Lam, H.W., Tasch, A.F., and Pinizotto, R.J. in VLSI Electronics Microstructure Science, Vol. 4, Ed. Einspruch, N.G., Academic Press N.Y., 1982.Google Scholar
18 Jastrzebski, L., J. Crystal Growth, 70, 253 (1984)Google Scholar
19 Hemment, P.L.F., Mat. Res. Soc. Proc., 22,41 (1984).CrossRefGoogle Scholar
20 Marsh, C.D., Hutchison, J.L., Booker, G.R., Reeson, K.J., Hemment, P.L.F., and Celler, G.K., 5th Oxford Conf. Semic., in Inst. Phys. Conf. Series, 1987.Google Scholar
21 Chater, R.J., Kilner, J.A., Hemment, P., Reeson, K., and Davis, J., Nucl. Inst. Meths., B19/20, 290 (1987).Google Scholar
22 Kilner, J.A., Chater, R.J., Hemment, P.L.F., Peart, R.F., Reeson, K.J., Arrowsmith, R.P., and Davis, J.R., Nucl. Inst. Meths., B15,214 (1986)Google Scholar
23 Krause, S., Jung, C., Wilson, S., Lorigan, R., and Burnham, M., Mat. Res. Soc. Symp. Proc., 53, 257 (1986).Google Scholar
24 Holland, O.W., Soreen, T.P., Fathy, D., and Narayan, J., Appl. Phys. Lett., 45, 1081 (1985).CrossRefGoogle Scholar
25 Hayashi, T., Okamoto, H., and Homma, Y., Inst. Phys. Conf. Ser., 59, 533 (1981).Google Scholar
26 Douglas-Hamilton, D.H., Dolan, R.P., and Friedman, H.E., Nucl. Inst. Meths., B21,158 (1987).CrossRefGoogle Scholar
27 Maydell-Ondrusz, E.A. and Wilson, I.H., Thin Solid Films, 114, 357 (1984).Google Scholar
28 Jager, H.U., Nucl. Inst. Meths., B15, 748 (1987).Google Scholar
29 Kilner, J.A. and Chater, R.F., private communication.Google Scholar
30 van Ommen, A.H., Koek, B.H., and Viegers, M.P.A., Appl. Phys. Lett., 49,628 (1986).CrossRefGoogle Scholar
31 Kishino, S., Matsushita, Y., Kanamori, M., and Iizuka, T., Japanese J. Appl. Phys., 21,1 (1982).Google Scholar
32 Freeland, P.E., Jackson, K.A., Lowe, C.W., and Patel, J.R., Appl.Phys. Lett., 20,31 (1977).Google Scholar
33 Hu, S.M., J. Appl. Phys., 52, 3974 (1981).Google Scholar
34 Ham, F.S., J. Appl. Phys., 20, 915 (1956).Google Scholar
35 Newman, R.C., Binns, M.J., Brown, W.P., Livingston, F.M., Messoloras, S., Stewart, R.J., and Wilkes, J.G., Physica, 116B, 264 (1983).Google Scholar
36 Bourret, A., Thibault-Desseaux, J., and Seidman, B.N., J. Appl. Phys., 58, 3424 (1985).Google Scholar
37 Bourret, A., 5th Oxford Conf. Semic, in Inst. Phys. Conf. Ser., 1987.Google Scholar
38 Bergholz, W., Hutchinson, J.L., and Pirouz, P., J. Appl. Phys., 58, 3419 (1985).Google Scholar
39 Tan, T.Y., Foell, H., Mader, S., and Krakow, W., “Defects in Semiconductors”, ed. Narayan, J. and Tan, T.Y. (North Holland, New York, 1981), Vol. 2, p. 189.Google Scholar
40 Ponce, F.A., Inst. Phys. Conf. Ser., 26, 1 (1985).Google Scholar
41 Ponce, F.A. and Hahn, S., Mat. Res. Soc. Symp. Proc., 21,153 (1986).Google Scholar
42 Stoemenos, J. and Margail, J., Thin Solid Films, 135,115 (1986)Google Scholar
43 Craven, R., Electrochem. Soc. Semiconductor Silicon, 254, (1981).Google Scholar
44 Krause, S., Jung, C., Wilson, S., and Burnham, M., 5th Oxford Conf. Semic, in Inst. Phys. Conf. Ser., 1987.Google Scholar
45 Ravi, K.V., “Imperfections and Impurities in Semiconductor Silicon” (Wiley-Interscience,New York, 1981).Google Scholar
46 White, A., Short, K.T., Batstone, J., Jacobson, D., Poate, J., and West, K., Appl. Phys. Lett, 50, 19 (1986).Google Scholar
47 Tiller, W. A., Hahn, S., and Ponce, F.A., J. Appl. Phys., 52, 3255 (1986).Google Scholar
48 Reeson, K.J., Nucl. Inst. Meths. B19/20, 269 (1987).Google Scholar