Published online by Cambridge University Press: 01 February 2011
We propose a new concept of a gene field effect transistor (FET) for detection of allele specific oligonucleotide hybridization, which is in principle based on charge density change at the gate insulator. The electrical characteristics of the gene FET were found to shift after specific binding of biomolecules at the surface of the gate insulator. Allele specific oligonucleotide hybridization and reaction between double-stranded DNA and intercalator were successfully detected with gene FETs because they have intrinsic charges in an aqueous solution. Ability to discriminate single nucleotide polymorphism (SNP) was also examined using the gene FET. Our results show that control of hybridization temperature and utilization of intercalator lead to more precise SNP analysis using the gene FET.