Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T14:00:35.300Z Has data issue: false hasContentIssue false

Potential of Hot Wire CVD for Active Matrix TFT Manufacturing

Published online by Cambridge University Press:  31 January 2011

Ruud E.I. Schropp
Affiliation:
[email protected], Utrecht University, Utrecht, Netherlands
Zomer Silvester Houweling
Affiliation:
[email protected], Utrecht University, Utrecht, Netherlands
Vasco Verlaan
Affiliation:
[email protected], Eindhoven University of Technology, Eindhoven, Netherlands
Get access

Abstract

Hot Wire Chemical Vapor Deposition (HWCVD) is a fast deposition technique with high potential for homogeneous deposition of thin films on large area panels or on continuously moving substrates in an in-line manufacturing system. As there are no high-frequency electromagnetic fields, scaling up is not hampered by finite wavelength effects or the requirement to avoid inhomogeneous electrical fields. Since 1996 we have been investigating the application of the HWCVD process for thin film transistor manufacturing. It already appeared then that these Thin Film Transistors (TFTs) were electronically far more stable than those with Plasma Enhanced (PE) CVD amorphous silicon. Recently, we demonstrated that very compact SiNx layers can be deposited at high deposition rates, up to 7 nm/s. The utilization of source gases in HWCVD of a-Si3N4 films deposited at 3 nm/s is 75 % and 7 % for SiH4 and NH3, respectively. Thin films of stoichiometric a-Si3N4 deposited at this rate have a high mass-density of 3.0 g/cm3. The dielectric properties have been evaluated further in order to establish their suitability for incorporation in TFTs. Now that all TFT layers, namely, the SiNx insulator, the a-Si:H or μc Si:H layers, and the n-type doped thin film silicon can easily be manufactured by HWCVD, the prospect of “all HWCVD” TFTs for active matrix production is within reach. We tested the 3 nm/s SiNx material combined with our protocrystalline Si:H layers deposited at 1 nm/s in ‘all HW’ TFTs. Results show that the TFTs are state of the art with a field-effect mobility of 0.4 cm2/Vs. In order to assess the feasibility of large area deposition we are investigating in-line HWCVD for displays and solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Honda, N. Masuda, A. Matsumura, H. J. Non-Cryst. Solids 266269, 100(2000).Google Scholar
2 Nelson, B.P. Xu, Y. Mahan, A.H. Williamson, D.L. Crandall, R.S. Mater. Res. Soc. Symp. Proc. 609, A22.8.1 (2000).Google Scholar
3 Ansari, S.G. Umemoto, H. Morimoto, T. Yoneyame, K. Izumi, A. Masuda, A. Matsumura, H. Thin Solid Films 501, 31(2006).Google Scholar
4 Schropp, R.E.I. Jpn. J. Appl. Phys. 45, 4309(2006).Google Scholar
5 Verlaan, V. Verkerk, A.D. Arnoldbik, W.M. van der Werf, C.H.M., Bakker, R. Houweling, Z.S. Romijn, I.G. Borsa, D.M. Weeber, A.W. Luxembourg, S.L. Zeman, M. Dekkers, H.F.W. and Schropp, R. E. I. Thin Solid Films 517, 3499(2009).Google Scholar
6 Verlaan, V. van der Werf, C.H.M., Houweling, Z.S. Dekkers, H.F.W. Romijn, I.G. Weeber, A.W. Goldbach, H.D. and Schropp, R.E.I. Prog. Photovolt. Appl. 15, 563(2007).Google Scholar
7 Schropp, R.E.I. van der Werf, C.H.M., Verlaan, V. Rath, J.K. and Li, H., Thin Solid Films 517, 3039(2009).Google Scholar
8 Verlaan, V. van der Werf, C.H.M., Arnoldbik, W.M. Goldbach, H.D. Schropp, R.E.I. Phys. Rev. B 73, 195333(2006).Google Scholar
9 Akasaka, A. Extended Abstracts of the 4th Int'l. Conf. on Hot wire CVD Process, Takayama, Japan (2006).Google Scholar
10 Schropp, R.E.I. Nishizaki, S. Houweling, Z.S. Verlaan, V. van der Werf, C.H.M., and Matsumura, H. Solid St. Electron. 52, 427(2008).Google Scholar
11 Matsumura, H. J. Appl. Phys. 65, 4396(1989).Google Scholar
12 Mahan, A.H. Carapella, J. Nelson, B.P. Crandall, R.S. and Balberg, I. J. Appl. Phys. 69, 6728(1991).Google Scholar
13 Feenstra, K.F. Schropp, R.E.I. and Weg, W.F. van der, J. Appl. Phys. 85, 6843(1999).Google Scholar
14 Rath, J. K. Tichelaar, F.D. Meiling, H. and Schropp, R.E.I. Mat. Res. Soc. Symp. Proc. 507, 879(1998).Google Scholar
15 Meiling, H. and Schropp, R.E.I. Appl. Phys. Lett. 70, 2681(1997).Google Scholar
16 Hasegawa, S. He, L., Amano, Y. and Inokuma, T. Physical Review B 48, 5315(1993).Google Scholar
17 Sakai, M. Tsutsumi, T. Yoshioka, T. Masuda, A. and Matsumura, H. Thin Solid Films 395, 330(2001).Google Scholar
18 Stannowski, B. Rath, J.K. and Schropp, R.E.I. Thin Solid Films 395, 339(2001).Google Scholar
19 Nishizaki, S. Ohdaira, K. and Matsumura, H. 13th Int. Display Workshop, Vol. 2, Dec. 7; AMDp-3 (2006).Google Scholar
20 Schropp, R.E.I. Veen, M.K. van, van der Werf, C.H.M., Williamson, D.L. Mahan, A.H. Mat. Res. Soc. Symp. Proc. 808, A8.4.1 (2004).Google Scholar
21 Powell, M.J. Berkel, C. van, and Hughes, J.R. Appl. Phys. Lett. 54, 1323(1989).Google Scholar
22 Saboundji, A. Coulon, N. Gorin, A. Lhermite, H. Mohammed-Brahim, T., Fonorodana, M. Bertomeu, J. Andreu, J. Thin Solid Films 487, 227(2005).Google Scholar
23 Claassen, W.A.P. Valkenburg, W.G.J.M. Wijgert, W.M. v.d. and Willemsen, M.F.C. Thin Solid Films 129, 239(1985).Google Scholar
24 Masuda, A. Totsuka, M. Oku, T., Hattori, R. and Matsumura, H. Vacuum 74, 525(2004).Google Scholar
25 Takano, M. Niki, T. Heya, A. Osono, T. Yonezawa, Y. Minamikawa, T. Muroi, S. Minami, S. Masuda, A. Umemoto, H. and Matsumura, H. Jpn. J. Appl. Phys. 44, 6A, 4098 (2005).Google Scholar
26 Sazonov, A. Stryahilev, D. Nathan, A. and Bogomolova, L. D. J. Non-Cryst. Solids 299302, 1360(2002).Google Scholar
27 Quinn, L.J. Mitchell, S.J.N. Armstrong, B.M. and Gamble, H.S. J. Non-Cryst. Solids 187, 347(1995).Google Scholar
28 Stannowski, B. Silicon-based thin-film transistors with a high stability, Ph.D. thesis Universiteit Utrecht (2002).Google Scholar
29 Liu, F. Ward, S. Gedvilas, L. Keyes, B. To, B. Wanga, Qi. J. Appl. Phys. 96, 2973(2004).Google Scholar
30 Schropp, R.E.I. and Zeman, M. Amorphous and Microcrystalline Solar Cells: Modeling, Materials and Devices Technology (Springer, 1998).Google Scholar