Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T04:19:24.074Z Has data issue: false hasContentIssue false

A Possible Production Technique for Modulation Doped Sige Heterostructures

Published online by Cambridge University Press:  10 February 2011

C. Rosenblad
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland
M. Kummer
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland
E. Müller
Affiliation:
Laboratorium für Mikro- und Nanostrukturen, PSI, CH-5232 Villigen, Switzerland
T. Hackbarth
Affiliation:
DaimlerChrysler AG, Research and Technology, D-89081 Ulm, Germany
H. Von Känel
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland
Get access

Abstract

The SiGe graded buffer layer is one of the most promising virtual substrates for future Si based high speed devices. The production of the SiGe buffer layer is, however, hampered by the time consumed by the synthesis of the several μm thick epitaxial layer. Low energy plasma enhanced chemical vapour deposition (LEPECVD) is a growth technique developed for low temperature epitaxy at high rates. Here we study the possibility to combine LEP-ECVD for graded SiGe buffer layer growth with other techniques for the growth of the electrically active layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pidduck, A.J., Robbins, D.J., Wallis, D., Williams, G.M., Churchill, A.C., Newey, J.P., Crompton, C., and Smith, P.W., Inst. Phys. Conf. Ser. 157, 135(1997).Google Scholar
2. Hackbarth, T., Kibbel, H., Clack, M., G. Höck, and Herzog, H.-J., Thin Solid Films 321, 136(1998).Google Scholar
3. Ismail, K., Arafa, M., Saenger, K.L., Chu, J.O., and Meyerson, B.S., Appl. Phys. Lett. 66, 1077(1995).Google Scholar
4. Rosenblad, C., Kummer, M., Dommann, A., Mailler, E., Gusso, M., Tapfer, L., and Känel, H. von, accepted for publication in Material Science & Engeneering B.Google Scholar
5. Rosenblad, C., Kummer, M., Dommann, A., Muller, E., and von Känel, H. Appl. Phys. Lett. 76, 427(2000).Google Scholar
6. Rosenblad, C., Deller, H.R., Dommann, A., Meyer, T., Schroeder, P., and von Känel, H. J. Vac. Sci. Technol. A 16, 2785(1998).Google Scholar
7. Sutter, P., Groten, D., Miuller, E., Lenz, M., and von Känel, H. Appl. Phys. Lett. 67, 3954(1995).Google Scholar
8. Hackbarth, T., Herzog, H.-J., Zeuner, M., G. Höck, Fitzgerald, E.A., Bulsara, M., Rosenblad, C., and von Känel, H., Int. Joint Conf. on Si Epitaxy and Heterostr., Zao, Japan (1999), to be published in Thin Solid Films.Google Scholar
9. Gates, S.M. and Kulkarni, S.K., Appl. Phys. Lett. 58, 2963(1991).Google Scholar
10. Kafader, U., Sirringhaus, H., and von Känel, H. Appl. Surf. Sci. 90, 297(1995).Google Scholar
11. Eaglesham, D.J., J. Appl. Phys. 77, 3597(1995).Google Scholar