Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T19:20:28.219Z Has data issue: false hasContentIssue false

Porous Thin-Film Anode Materials for Solid-Oxide fuel Cells

Published online by Cambridge University Press:  10 February 2011

Jeffrey D. Morse
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Robert T. Graff
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Jeffrey P. Hayes
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Alan F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Get access

Abstract

Thin film, solid-oxide fuel cells (TFSOFCs) synthesized from an electrolyte and conductive material are developed using photolithographic patterning and physical vapor deposition. The anode layer must enable combination of the reactive gases, be conductive to pass the electric current, and provide mechanical support to the electrolyte and cathode layers. The microstructure and morphology desired for the anode layer should facilitate generation of maximum current density from the fuel cell. For these purposes, the parameters of the deposition process and post-deposition patterning are developed to optimize a continuous porosity across the anode layer. The anode microstructure is characterized using scanning electron microscopy and the power ouput generated through current-voltage measurement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Minh, N., J. American Ceramic Society 76, 563(1993).Google Scholar
2. deSouza, S., Visco, S. and DeJonghe, L., Solid State Ionics 98 57(1997).Google Scholar
3. Thiele, E., Wang, L., Mason, T. and Barnett, S., J. Vac. Sci. Technol. A 9 3054(1991).Google Scholar
4. Jankowski, A. and Hayes, J., Surface and Coatings Technology 76–77, 126 (1995).Google Scholar
5. Jankowski, A. and Hayes, J., J. Vac. Sci. Technol. A 13, 658(1995).Google Scholar
6. Barnett, S., Energy 15, 1 (1990).Google Scholar
7. Jankowski, A.F. and Morse, J.D., in Materials for Electrochemical Energy Storage and Conversion II, ed. Doughty, D., et al., Mater. Res. Soc. Symp. Proc. 496, 155(1998).Google Scholar
8. Wang, L. and Barnett, S., J. Electrochemical Society 139, 2567(1992)Google Scholar
Wang, L. and Barnett, S., J. Electrochemical Society 139, L89 (1992).Google Scholar
9. Wang, L. and Barnett, S., Solid State Ionics 61 273(1993).Google Scholar
10. Jankowski, A.F., in Ionic and Mixed Conducting Ceramics III ed. Ramanarayanan, T., Electrochemical Society Proceedings 97–24, 106 (1998).Google Scholar
11. Tsai, T., Perry, E. and Barnett, S., J. Electrochemical Society 144, L130 (1997).Google Scholar