Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T15:55:03.904Z Has data issue: false hasContentIssue false

Pore Size Dependence of Proteinase K Diffusion Through Sol-Gel Derived Silica

Published online by Cambridge University Press:  01 February 2011

Winny Dong
Affiliation:
[email protected], California State Polytechnic University, Pomona, Chemical and Materials Engineering, 3801 W. Temple Ave., Pomona, CA, 91768, United States, 9098692634, 9098696920
Weijen Lin
Affiliation:
[email protected], California State Polytechnic University, Pomona, Biological Sciences, Pomona, 91768, United States
Nicole Contreras
Affiliation:
[email protected], California State Polytechnic University, Pomona, Chemical and Materials Engineering, Pomona, 91768, United States
Doja Elmatari
Affiliation:
[email protected], California State Polytechnic University, Pomona, Chemical and Materials Engineering, Pomona, 91768, United States
YiHsuan Lin
Affiliation:
[email protected], California State Polytechnic University, Pomona, Biological Sciences, Pomona, 91768, United States
Maria Torres
Affiliation:
[email protected], California State Polytechnic University, Pomona, Chemical and Materials Engineering, Pomona, 91768, United States
Get access

Abstract

Sol-gel derived silica particles are candidates for vehicles for injectable controlled drug-delivery. In this study, Proteinase K was the model biomolecule encapsulated in the silica xerogel, ambigel, and aerogel particles. The surface area and average pore diameter of these particles are reported. Both the amount of Proteinase K released from the particles and the activity of the released Proteinase K were measured as a function of time. The primary finding of this study is the effect of pore diameter on the specific activity of Proteinase K released from these particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lohmann, D., Macromol. Symp., 1995, 100, 25.Google Scholar
2 Oussoren, C., Storm, G., Adv. Drug Delivery Rev., 2001, 50, 143.Google Scholar
3 Couvreur, P., Dubernet, C., Puisieux, F., Eur. J. Pharm. Biopharm., 1995, 41, 2.Google Scholar
4 Abu-Rmaileh, R., Attwood, D., D'Emanuelle, A., Drug Delivery Syst. Sci., 2003, 3, 65.Google Scholar
5 Li, J., Ni, X., Leong, K.W., J. Biomed. Mater. Res., 2003, 65A, 196.Google Scholar
6 Kataoka, K., Hrada, A., Nagasaki, Y., Adv. Drug Delivery Rev., 2001, 47, 113.Google Scholar
7 Barbe, C., Bartlett, J., Kong, L., Finnie, K., Lin, H.Q., Larkin, M., Calleja, S., Bush, A., Calleja, G., Adv. Mater., 2004, 16, 1959.Google Scholar
8 Bush, A., Beyer, R., Trautman, R., Barbe, C., Bartlett, J.R., J. Sol-Gel Sci. Technol., 2004, 32, 85.Google Scholar
9 Lindberg, R., Sjoblom, J., Sundholm, G., Colloids and Surf. A, 1995, 99, 79.Google Scholar
10 Kortesuo, P., Ahola, M., Kangas, M., Kangasniemi, I., Yli-Urpo, A., Kiesvaara, J., Inter. J. Pharm., 2000, 200, 223.Google Scholar
11 Paiva, A.L., Balcao, V.M., Malcata, F.X., Enzyme Microb. Technol., 2000, 27, 187.Google Scholar
12 Desnuelle, P., Sarda, L., Ailhaud, G., Biochim Biophys Acta, 1960, 37, 570.Google Scholar
13 rassy, H. El, Perrard, A., Pierre, A.C., ChemBioChem, 2003, 4, 203.Google Scholar
14 Harreld, J.H., Dong, W., Dunn, B., Mater. Res. Bull., 1998, 33, 561.Google Scholar
15 Pronk, W., Kerkhof, P.J.A.M., Helden, C. van, Riet, K. van't, Biotechnol. Bioeng., 1988, 32, 512.Google Scholar
16 Malcata, F.X., Reyes, H.R., Garcia, H.S., Hill, C.G., Enzyme Microb. Technol., 1992, 14, 426.Google Scholar
17 Betzel, C., Pal, G.P., Saenger, W., Eur. J. Biochem., 1988, 178, 155.Google Scholar
18 Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Nature, 1991, 351, 491.Google Scholar