Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T23:49:30.193Z Has data issue: false hasContentIssue false

Polycrystalline Silicon-Germanium Electrode Contact Technology Improvement for MEMS Applications

Published online by Cambridge University Press:  31 January 2011

Gert Claes
Affiliation:
[email protected], IMEC, Leuven, Belgium
Simone Severi
Affiliation:
[email protected], IMEC, Leuven, Belgium
Stefaan Decoutere
Affiliation:
[email protected], IMEC, Leuven, Belgium
Jean-Pierre Celis
Affiliation:
[email protected], K.U.Leuven, MTM, Leuven, Belgium
Ann Witvrouw
Affiliation:
[email protected], IMEC, Leuven, Belgium
Get access

Abstract

Poly-SiGe has quite some potential as structural MEMS layer for CMOS-MEMS integration. However, the contact resistance between SiGe MEMS and top CMOS metal should be low to avoid parasitic effects that would reduce the system performance. In this paper, a new and simple approach is proposed to achieve a low contact resistance between a top CMOS interconnect and a boron doped poly-SiGe MEMS layer deposited at 450 °C. The use of a 20 nm soft sputter etch in combination with a Ti-TiN (5-10 nm) interlayer results in a contact resistivity of 6.2 ± 0.4 × 10-7 Ωcm2 that is lower than previously reported. The uniformity of the contact resistivity across the wafer is also better than the state-of-the-art value.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bhave, S.A. Bircumshaw, B.L. Low, W.Z. Kim, Y.S. Pisano, A.P. T.J. King and Howe, R.T. Poly-SiGe: A high-q structural material for integrated RF MEMS, Proc. Solid State Sensors, Actuators and Microsystems workshop, pp. 3437, June 2002 Google Scholar
[2] Sedky, S. Fiorini, P. Caymax, M. Verbist, A. Baert, C.IR bolometers made of polycrystalline silicongermanium’, Sensors and actuators A66, pp. 193199, 1998 Google Scholar
[3] Scheurle, A. Fuchs, T. Kehr, K. Leinenbach, C. Kronmüller, S., Arias, A. Ceballos, J. Lagos, M.A. Mora, J.M. Muñoz, J.M., Ragel, A. Ramos, J. Aerde, S. Van, Spengler, J. Mehta, A. Verbist, A. Bois, B. Du and Witvrouw, A. “A 10 μm thick poly-SiGe gyroscope processed above 0.35 νm CMOS”, Proc. IEEE MEMS 2007, pp. 3942, 2007 Google Scholar
[4] Witvrouw, A. Gromova, M. Mehta, A. Sedky, S. Moor, P. de, Baert, K. Hoof, C. van, “Poly-SiGe, a superb material for MEMS”, Mater. Res. Soc. Symp. Proc. Vol. 782, pp 2536, 2004 Google Scholar
[5] Claes, G. Barel, G. Van, Hoof, R. Van, Bois, B. Du, Gromova, M. Verbist, A. Donck, T. Van der, Decoutere, S. Celis, J.P. Witvrouw, A.Stacked boron doped polycrystalline silicon-germanium layers: an excellent MEMS structural material”, MRS Spring 2008 Proc. Vol. 1033 (J0502)Google Scholar
[6] Eyoum, M. and King, T.J.Low-resistance Silicon-Germanium contact technology for modular integration of MEMS with electronics”, J. of Electrochem. Soc. 151 (3) J21–J25, 2004 Google Scholar
[7] Waldner, P. and Eriksson, G.Thermodynamic modeling of the system Titanium-oxygen”, Calphad Vol. 23 no. 2, pp. 189218, 1999 Google Scholar
[8] Ernsberger, C. Nickerson, J. Smith, T. Miller, A.E. and Banks, D.Low temperature oxidation behavior of reactively sputtered TiN by x-ray photoelectron spectroscopy and contact resistance measurements”, J. Vac. Sci. Technol. A4 (6), pp. 27842788, 1986 Google Scholar
[9] Bryce, G. Severi, S. Bois, B. Du, Willegems, M.. Claes, G. Hoof, R. Van, Haspeslagh, L. Decoutere, S. and Witvrouw, A.Simultaneous Optimization of the Material Properties, Uniformity and Deposition Rate of Polycrystalline CVD and PECVD Silicon-Germanium Layers for MEMS Applications”, ECS Trans. Vol. 16 (10), pp. 353364, 2008 Google Scholar