Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T05:26:49.887Z Has data issue: false hasContentIssue false

Polarity of GaN

Published online by Cambridge University Press:  10 February 2011

Z. Liliental-Weber
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720; USA
M. Benamara
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720; USA
O. Richter
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720; USA
W. Swider
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720; USA
J. Washburn
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720; USA
I. Grzegory
Affiliation:
High Pressure Research Center “Unipress,” Polish Academy of Sciences, Warsaw, Poland
S. Porowski
Affiliation:
High Pressure Research Center “Unipress,” Polish Academy of Sciences, Warsaw, Poland
J. W. Yang
Affiliation:
APA Optics, Inc., 2950 N.E. 84th Lane, Blaine, MN 55449, USA
S. Nakamura
Affiliation:
Nichia Chemical Industries Ltd, 491 Oka, Kaminaka, Anan, Tokushima 774, Japan
Get access

Abstract

Convergent beam electron diffraction (CBED) was applied to study polarity of GaN heterolayers grown by MOCVD on sapphire and SiC substrates and also mechano-chemically polished bulk GaN platelet crystals grown from Ga melt under hydrostatic pressure of N. Heterolayers of GaN grown on both types of substrates showed (0001) Ga polarity, e.g. Ga to N along c-axis. Mechano-chemical etching of bulk GaN platelet crystals leaves one surface smooth and the opposite surface rough with visible damage caused by mechanical polishing. CBED studies showed that the smooth surface has (0001) N polarity, confirming our earlier studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ponce, F. A., Bour, D. P., Young, W. T., Saunders, M., and Steeds, J. W., Appl. Phys. Lett. 69, 337 (1996)Google Scholar
2. Liliental-Weber, Z., Kisielowski, C., Ruvimov, S., Chen, Y., Washburn, J., Grzegory, I., Bockowski, M., Jun, J., and Porowski, S., J. Electr. Mat. 25, 1545 (1996).Google Scholar
3. Liliental-Weber, Z., Washburn, J., Pakula, K., and Baranowski, J., Microscopy and Microanalysis the Journal of the Electron Microscopy Society of America 3, 436 (1997).Google Scholar
4. Rouviere, J. L., Arlery, M., Bourret, A., Niebuhr, R., Bachem, K. H.. Mat. Res. Soc. Symp. Proc. 395, 393 (1996).Google Scholar
5. Daudin, B., Rouviere, J. L., and Arlery, M., Appl. Phys. Lett. 69, 2480 (1996).Google Scholar
6. Vermaut, P., Ruterana, P., Nouet, G., Salvador, A., and Morkoc, H., Mat. Res. Soc. Symp. Proc. 423, 551 (1997).Google Scholar
7. Weyher, J. L., Muller, S., Grzegory, I., and Porowski, S., J. Cryst. growth 182, 17 (1997).Google Scholar
8. Iller, A., Marks, J., Grzegory, I., Litwin-Staszewska, E. and Bockowski, M., Cryst. Res. Technol. 32, 229 (1997).Google Scholar
9. Northtrup, J. E., presentation at APS Meeting, Los Angeles, March 1998.Google Scholar