Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T10:49:45.205Z Has data issue: false hasContentIssue false

Point Defect Characterization in CoAl Using Positron Annihilation

Published online by Cambridge University Press:  10 February 2011

Werner Puff
Affiliation:
Institut für Technische Physik, Technische Universitdt Graz, Petersgasse 16, A-8010 Graz, Austria, [email protected]
Bernd Logar
Affiliation:
Institut für Technische Physik, Technische Universitdt Graz, Petersgasse 16, A-8010 Graz, Austria, [email protected]
Adam G. Balogh
Affiliation:
FB Materialwissenschaft, FG Dünne Schichten, Technische Hochschule Darmstadt, Petersenstraße 23, 64287 Darmstadt, Germany
Get access

Abstract

Vacancy-like defects in CoAl in the composition range 48.5 at.-% <Cco, < 53 at.-% are investigated by means of positron lifetime spectroscopy and Doppler-broadening measurements. The observed lifetimes in the annealed samples confirm that defects are quenched-in during the production of the samples. The values of the positron lifetime and the S-parameter decrease with increasing Co concentration. After quenching from 1400°C or 1600°C an increase in the positron parameters isobserved. Long-time annealing of the Co-rich sample shows a dramatic decrease of the positron lifetime to the expected bulk lifetime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wasilewski, R.J., J. Phys. Chem. Solids 29, 39 (1968).CrossRefGoogle Scholar
2. Bradley, A.J., and Taylor, A., Proc. R. Soc. A159, 56 (1937).Google Scholar
3. Kogachi, M., Minamigawa, S., and Nakahigashi, K., Acta Metall. Mater. 40, 1113 (1992).CrossRefGoogle Scholar
4. Xiao, H. and Baker, I., Acta Metall. Mater. 42, 1535 (1994).CrossRefGoogle Scholar
5. Kogachi, M., Takeda, Y., and Tanahashi, T., Intermetallics 3, 129 (1995).CrossRefGoogle Scholar
6. Kogachi, M., Tanahashi, T., Shirai, Y., and Yamaguchi, M., Scr. Mater. 34, 243 (1996).CrossRefGoogle Scholar
7. Kogachi, M. and Tanahashi, T., Scr. Mater. 35, 849 (1996).CrossRefGoogle Scholar
8. Puff, W., Logar, B., and Balogh, A.G., Acta Mater. 47, 101 (1998).CrossRefGoogle Scholar
9. Dekhtyar, I. Ya., Fedchenko, R.G., Sakharova, S.G., phys. stat. sol. (b) 91, K77 (1979).Google Scholar
10. Esser, H.-G.(private communication).Google Scholar
11. Puff, W., Comput. Phys. Commun. 30, 359 (1983).CrossRefGoogle Scholar
12. Puff, W. and Meng, X.-T., J. Appl. Phys. 73, 648 (1993).CrossRefGoogle Scholar
13. West, R.N., in Positrons in Solids, edited by Hautojaervi, P. (Springer, Berlin, 1979) pp. 89144.CrossRefGoogle Scholar
14. Neumann, J.P., Chang, Y.A., and Lee, C.M., Acta Metall. 24, 593 (1976)CrossRefGoogle Scholar
15. Kim, S.M., Mater. Sci. Forum 15–18, 1323 (1987).CrossRefGoogle Scholar
16. Kim, S.M., Acta Metall. Mater. 40, 2793 (1992).CrossRefGoogle Scholar