Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T08:20:45.193Z Has data issue: false hasContentIssue false

PLD Growth of CNTs using a Nanostuctured Ni Buffer Layer: Dependence of H2 partial Pressure

Published online by Cambridge University Press:  01 February 2011

Maneesh Chandran
Affiliation:
Indian Institute of Technology Madras (IITM), Physics, Department of Physics and Materials Science Research Centre,, Chennai, Tamil Nadu, 600 036, India, +91 442257 4872
K. Mohan Kant
Affiliation:
[email protected], Indian Institute of Technology Madras, Department of Physics, Chennai, 600036, India
N. Rama
Affiliation:
[email protected], Indian Institute of Technology Madras, Department of Physics, Chennai, 600036, India
M.S. Ramachandra Rao
Affiliation:
[email protected], Indian Institute of Technology Madras, Department of Physics, Chennai, 600036, India
Get access

Abstract

The effect of hydrogen partial pressure on the growth of CNT thin films using on-axis PLD has been studied. Using nickel as buffer layer, carbon nanotubes can be produced with good yield in Hydrogen atmosphere. We have found strong visible-near infrared (NIR) photoluminescence (PL) from carbon nanotube thin films synthesized under various hydrogen partial pressures. The present result shows that bright, narrow PL from CNTs can be obtained without any post growth processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ijiima, S., Nature (London) 354, 56, (1991).Google Scholar
[2] Dresselhaus, M.S., Dresselhaus, G., and Avouris, Ph., Carbon Nanotubes: Synthesis, Structures, properties and Applications (Springer, Berlin, 2001).Google Scholar
[3] Bachilo, Sergei M., Strano, Michael S., Kittrell, Carter, Hauge, Robert H., Smalley, Richard E., and Weisman, R. Bruce, Science 298, 2361 (2002).Google Scholar
[4] Lefebvre, J., Homma, Y., and Finnie, P., Phy. Rev. Lett. 90, 217401 (2003).Google Scholar
[5] Jost, O., Gorbunov, A.A., Moller, J., Pompe, W., Liu, X., Georgi, P., Dunsch, L., Golden, M.S., and Fink, J., J. Phys. Chem. B 106, 2875 (2002).Google Scholar
[6] Zhang, Y., Gu, H., and Iijima, S., Appl. Phys. Lett. 73, 3827 (1998).Google Scholar
[7] O'Connell, Michael J., Bachilo, Sergei M., Huffman, Chad B., Moore, Valerie C., Strano, Michael S., Haroz, Erik H., Rialon, Kristy L., Boul, Peter J., Noon, William H., Kittrell, Carter, Ma, Jianpeng, Hauge, Robert H., Weisman, R. Bruce, and Smalley, Richard E., Science, 297, 593 (2002).Google Scholar
[8] Lebedkin, Sergei, Hennrich, Frank, Skipa, Tatyana, and Kappes, Manfred M., J. Phys. Chem. B, 107, 1949 (2003).Google Scholar
[9] Guo, Jiandong, Yang, Chunlei, Li, Z.M., Bai, Ming, Liu, H. J., Li, G. D., Wang, E.G., Chan, C.T., Tang, Z. K., Ge, W. K., and Xiao, Xudong; Phys. Rev. Lett. 93, 017402 (2004).Google Scholar
[10] Willmott, P. R. and Huber, J. R., Reviews of Modern Physics, 72, 315 (2000).Google Scholar
[11] P.K, Bachmann., Ullman's Encyclopedia of Industrial Chemistry, A26, pp 720 (1996).Google Scholar
[12] Reich, S., Thomsen, C., Maultzsch, J., Carbon nanotubes (Wiley-VCH, Berlin, 2004).Google Scholar