Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:01:48.059Z Has data issue: false hasContentIssue false

Plasma Etching of Tungsten Silicide Structures Using NF3-Halocarbon Etchants

Published online by Cambridge University Press:  21 February 2011

John G. Langan
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA. 18195
Jeffrey M. Parks
Affiliation:
Sherman Fairchild Laboratory, Lehigh University, Bethlehemm, PA. 18015
Mark A. George
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA. 18195
Ralph J. Jaccodine
Affiliation:
Sherman Fairchild Laboratory, Lehigh University, Bethlehemm, PA. 18015
Get access

Abstract

The feasibility of utilizing NF3-halocarbon mixed etchants to anisotropically etch tungsten silicide structures has been investigated. CVD tungsten silicide was etched with various mixtures of CF3Cl and CF2Cl3 to which 0 to 50 vol percent NF3 was added under a variety of conditions. Anisotropy, undercutting, and notching were evaluated using cross-sectional SEM. Relative etch rates and selectivity for each gas mixture were also determined. Halocarbon residues were investigated using XPS and related to side wall passivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sellamuthu, R., Barkanic, J., Jaccodine, R., J. Vac. Sci. Techn. B5, 342 (1987).Google Scholar
2. Barkanic, J.A., Reynolds, D.M., Jaccodine, R.J., Stenger, H.G., Parks, J., Vedage, H., Solid State Techn., 32, 109 (1989).Google Scholar
3. Barkanic, J.A., Sellamuthu, R., Jaccodine, R., Verdage, H., Electreochem. Soc. 6th Plasma Symp. Proc., May (1987).Google Scholar
4. Langley, R.C., Beaker, D.S., and Grynkewich, W., Semiconductor Internaional, 12, 95 (1989).Google Scholar
5. Chow, T.P., and Steckel, A.J., IEEE Trans. Electron Devices, 1480 (1983).Google Scholar
6. Hess, D.W., Solid State Technology, 31, 97 (1988).Google Scholar
7. Chow, T.P. and Steckel, A.J., J. Electrochem. Soc., 131, 2325 (1984) and references therein.Google Scholar
8. Roth, S.S., Cullen, M., Reyes, J., and Taylor, M., J. Vac. Sci. Tech., B7, 557 (1989).Google Scholar
9. Lin, C.L., Ho, P.D. in Plasma Processing, edited by Coburn, J.W., Gottscho, R.A., Hess, D.W. (MRS Sympossium Proc. 68 47 1986).Google Scholar
10. Tsai, M.Y. et al., J. Electrochem. Soc., 128 2207 (1981).Google Scholar
11. White, F.R., Koburge, C.W., Harmar, D.L., Geipel, H.J., J. Electrochem. Soc., 129, 1330 (1982).Google Scholar
12. Eprath, L.M., Bennett, R.S. in VLSI Science and Technology, 1981, ed. by Dell'Oca, C.J., Bullis, W.M. (The Electrochem. Soc., Peninngton NJ, 108, 1981)Google Scholar
13. Clark, S.E., Tsang, J-K, Marolf, J.W., Solid State Tech., 27 235 (1984).Google Scholar
14. Fischl, D.S., Hess, D.W., J. Electrochem. Soc., 134, 2265 (1987).Google Scholar
15. Chow, T.P. and Steckl, A.J., IEEE IEDM Tech. Dis.149 (1980).Google Scholar
16. Chow, T.P. and Steckl, A.J., J. Appl. Phys., 53, 5531 (1982).Google Scholar
17. Okazaki, S., Chow, T.P., and Steckl, A.J., IEEE Trans. Electron Devices, ed-28, 1364 (1981).Google Scholar
18. Jaso, M.A., Robey, S.W., and Oehrlein, G.S., J. Electrochem. Soc. 136, 3812 (1989).Google Scholar