Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:35:15.255Z Has data issue: false hasContentIssue false

Plasma deposition of amorphous carbon films from methane atmospheres highly diluted in argon

Published online by Cambridge University Press:  17 March 2011

L. G. Jacobsohn
Affiliation:
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro Caixa Postal 38071, 22452-970 Rio de Janeiro, RJ, Brazil.
F. L. Freire Jr
Affiliation:
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro Caixa Postal 38071, 22452-970 Rio de Janeiro, RJ, Brazil.
Get access

Abstract

We investigated the deposition, structure and mechanical properties of a-C:H films grown in Ar-CH4 mixtures with the Ar partial pressure ranging from 0 to 99 %. The deposition rate strongly decreased with progressive Ar dilution of the CH4 atmosphere. Films deposited in pure CH4 atmospheres have a hydrogen content of 20 at.% that showed a trend to decrease for lower CH4 partial pressures, while the density remained nearly constant at around 1.4x1023 at./cm3. Raman spectroscopy and x-ray diffraction revealed the amorphous character of the films. The compressive internal stress remained constant around 2.5 GPa and the hardness decreases for Ar rich precursor atmospheres.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Keudell, A. von and Möller, W., J. Appl. Phys., 75, 7718 (1994).Google Scholar
[2] Sun, Z., Lin, C. H., Lee, Y. L., Shi, J. R., Tay, B. K. and Shi, X., J. Appl. Phys., 87, 8122 (2000).Google Scholar
[3] Tomasella, E., Meunier, C. and Mikhailov, S., Surf. Coat. Technol., 141, 286 (2001).Google Scholar
[4] Riccardi, C., Barni, R., Fontanesi, M. and Tosi, P., Chem. Phys. Lett., 329, 66 (2000).Google Scholar
[5] Amaratunga, G., Putnis, A., Clay, K. and Milne, W., Appl Phys. Lett., 55, 634 (1989).Google Scholar
[6] Freire, F. L. Jr, Franceschini, D.F., Achete, C.A., Nucl. Instrum. Methods Phys. Res.B, 85, 268 (1994)Google Scholar
[7] Jacobsohn, L.G. and Freire, F. L. Jr, J. Vac. Sci. Technol. A, 17, 2841 (1999).Google Scholar
[8] Oliver, W. C. and Pharr, G. M., J. Mat. Res., 7, 1564 (1992).Google Scholar
[9] Coufal, H., Winters, H. F., H, L. Bay and Eckstein, W., Phys. Rev. B, 44, 4747 (1991).Google Scholar
[10] Küppers, J., Surf. Sci. Rep., 22, 249 (1995).Google Scholar
[11] Tamor, M.A. and Vassell, W.C., J. Appl. Phys., 76, 3823 (1994).Google Scholar
[12] Zou, J. W., Reichelt, K., Schmidt, K. and Dischler, B., J. Appl. Phys., 65, 3914 (1989).Google Scholar
[13] Valentini, L., Kenny, J. M., Mariotto, G., Carlotti, G., Socino, G., Lozzi, L. and Santuci, S., J. Vac. Sci. Technol. A, 19, 1611 (2001).Google Scholar
[14] Dischler, B., Bubenzer, A. and Koidl, P., Solid State Commun., 48, 105 (1983).Google Scholar
[15] Dillon, O., Woollam, J. and Katkanant, V., Phys. Rev. B, 29, 3482 (1984).Google Scholar
[16] Vandentop, G. J., Kawasaki, M., Nix, R. M., Brown, I. G., Salmeron, M. and Somorjai, G. A., Phys. Rev. B, 41, 3200 (1990).Google Scholar
[17] Jacobsohn, L. G., Franceschini, D. F., Costa, M. E. H. Maia da and Freire, F. L. Jr, J. Vac. Sci. Technol. A, 18, 2230 (2000).Google Scholar
[18] Schwarzenbach, W., Cunge, G. and Booth, J. P., J. Appl. Phys., 85, 7562 (1999)Google Scholar