Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T03:57:43.096Z Has data issue: false hasContentIssue false

Plasma Deposited Silicon Nitride Film Chemistry

Published online by Cambridge University Press:  21 February 2011

Justin N. Chiang
Affiliation:
Raychem Corporation, 300 Constitution Drive, Menlo Park, CA, 94205
Dennis W. Hess
Affiliation:
Chemical Engineering Department, University of California-Berkeley, Berkeley, CA 94720
Get access

Abstract

The structure and composition of plasma deposited (PD) silicon nitride thin films formed using NH3/SiH4, N2/SiH4, and N2/SiH4/H2, discharges are compared. The effect of introducing a DC grounded stainless steel mesh between the parallel electrodes is also discussed. Chemical structure and composition of these films are measured using X-ray Photoelectron Spectroscopy and Fourier Transform Infrared Spectroscopy. Significant changes in film composition are observed with changes in gas composition and with utilization of the screen. When the screen is invoked, variations in film composition are more pronounced for PD silicon nitride films formed using N2 as the nitrogen source. An increase in the N:Si ratio occurs for all films deposited using the screen. This compositional change is reflected in increased N-H and decreased Si-H bonding. Similar changes are also observed in films deposited from a N2/SiH4/H2 discharge compared to films formed using a N2/SiH4 discharge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chiang, J., and Hess, D.W., SPIE Proceedings-Monitoring and Control of Plasma-Enhanced Processing of Semiconductors, ed. Griffiths, J.E., 1037, 136 (1988).Google Scholar
2. Robertson, R.M. and Rossi, M.J., Appl. Phys. Lett., 54, 185 (1989).Google Scholar
3. Perrin, J. and Broekhuizen, T., Appl. Phys. Lett., 50, 433 (1987).Google Scholar
4. Smith, D.L., Alimonda, A.S., Chen, C.C., Ready, S.E., and Wacker, B., to be published.Google Scholar
5. Matsuda, A., Kaga, T., Tanaka, H., and Tanaka, K., J. Non-Cryst. Sol., 50&60, 687 (1983).Google Scholar
6. Matsuda, A., Yagii, K., Koyama, M., Toyama, M., Imanishi, Y., Ikuchi, N., and Tanka, K., Appl. Phys. Lett., 47, 1061 (1985).Google Scholar
7. Tsu, D.V., Lucovsky, G., and Mantini, M.J., Phys. Rev. B 33, 7069 (1986).Google Scholar
8. Lucovsky, G., and Tsu, D.V., J. Vac. Sci. Technol., A5, 2231 (1987).Google Scholar
9. Chiang, J.N., Hess, D.W., J. Appl. Phys., 65,1 (1989).Google Scholar
10. Smith, D.L., Alimonda, A.S., Chen, C.C., Jackson, W., and Wacker, B., in Amorphous Silicon Technology, eds. Madan, A., Thompson, M.J., Taylor, P.C., LeComber, P.G., Hamakawa, Y., MRS Symp. Proc., 118, 107 (1988).Google Scholar
11. Grunthaner, F.J., Grunthaner, P.J., Vasquez, R.P., Lewis, B.F., and Maserjian, J., and Madhukar, A., Phys. Rev. Let. 43, 1683 (1979).Google Scholar
12. Niki, H., and Mains, G.J., J. Phys. Chem., 68, 304 (1964).Google Scholar
13. Brodsky, M.H., Cardona, M., and Cuomo, J.J., Phys. Rev. B, 16, 3556 (1977).Google Scholar
14. Gleason, K.K., Petrich, M.A., and Reimer, J.A., Phys. Rev. B, 36, 3259 (1987).Google Scholar
15. Street, R.A., Kakalios, J., and Hayes, T.M., Phys. Rev. B, 34, 3030 (1986).Google Scholar
16. Street, R.A., Kakalios, J., Tsai, C.C., and Hayes, T.M., Phys. Rev. B, 35, 1316 (1987).Google Scholar
17. Smith, D.L., Alimonda, A.S., and von Preissig, F., in Chemical Perspectives of Microelectronic Materials, MRS Symp. Proc., 131 (1989).Google Scholar
18. Chiang, J.N., and Hess, D.W., submitted to J. Appl. Phys.Google Scholar
19. Parsons, G.N., Tsu, D.V., and Lucovsky, G., J. Non-Cryst. Sol. 97&98, 1375 (1987).Google Scholar