Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T02:38:51.612Z Has data issue: false hasContentIssue false

Planar Non-Volatile Memory based on Metal Nanoparticles

Published online by Cambridge University Press:  26 July 2011

A. Kiazadeh
Affiliation:
Center of Electronics Optoelectronics and Telecommunications (CEOT)Universidade do Algarve, Campus de Gambelas, 8000-139 Faro, Portugal,
H. L. Gomes
Affiliation:
Center of Electronics Optoelectronics and Telecommunications (CEOT)Universidade do Algarve, Campus de Gambelas, 8000-139 Faro, Portugal,
A. R. Da Costa
Affiliation:
Centro de Investigação em Química do AlgarveUniversidade do Algarve, Campus de Gambelas, 8000-139 Faro, Portugal,
P. Rocha
Affiliation:
Centro de Investigação em Química do AlgarveUniversidade do Algarve, Campus de Gambelas, 8000-139 Faro, Portugal,
Q. Chen
Affiliation:
Centro de Investigação em Química do AlgarveUniversidade do Algarve, Campus de Gambelas, 8000-139 Faro, Portugal,
J. A. Moreira
Affiliation:
Centro de Investigação em Química do AlgarveUniversidade do Algarve, Campus de Gambelas, 8000-139 Faro, Portugal,
D. M. De Leeuw
Affiliation:
Philips Research Laboratories, High Tech Campus 4 WAG 11, 5656 AE Eindhoven, The Netherlands
S. C. J. Meskers
Affiliation:
Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Get access

Abstract

Resistive switching properties of silver nanoparticles hosted in an insulating polymer matrix (poly(N-vinyl-2-pyrrolidone) are reported. Planar devices structures using interdigitated gold electrodes were fabricated. These devices have on/off resistance ratio as high as 103 , retention times reaching to months and good endurance cycles. Temperature-dependent measurements show that the charge transport is weakly thermal activated (73 meV) for both states suggesting that nanoparticles will not aggregate into a metallic filament.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bozano, L. D., Kean, B. W., Beinhoff, M., Carter, K. R., Rice, P. M., Scott, J. C., J. Adv. Fun. Mater. 15, 1933 (2005)Google Scholar
2. Liu, G., Ling, Q. D., Kang, E. T., Neoh, K. G., Liaw, D. J., Chang, F. C., Zhu, C. X., Chan, D. S. H., J. Appl. Phys. 102, 024502 (2007)Google Scholar
3. Paul, S., Kanwal, A., Chhowalla, M., J. Nanotechnology, 17, 145 (2006)Google Scholar
4. Majumdar, H. S., Baral, J. K., Österbacka, R., Ikkala, O., Stubb, H., J. Org. Electron. 6, 188 (2005)Google Scholar
5. Lin, H.T., Pei, Z., Chan, Y. J., IEEE Electron Dev. Lett. 28, 569 (2007)Google Scholar
6. Pradhan, B., Batabyal, S. K., Pal, A. J., J. Phys. Chem. B. 110, 8274 (2006)Google Scholar
7. Cho, B., Kim, T. W., Choe, M., Wang, G., Song, S., Lee, R., J. Org. Electron. 10, 473 (2009)Google Scholar
8. Scott, J. C., Bozano, L. D., J. Adv. Mater. 19, 1452 (2007)Google Scholar
9. Simmons, J. G. and Verderber, R. R., Proceedings of the Royal Society of London, Series A. 301, 77 (1967)Google Scholar
10. Liang, X. F., Chen, Y., Shi, L., Lin, J., Yin, J. and Liu, Z. G., J. Phys. D: Appl. Phys. 40, 4767 (2007)Google Scholar
11. Waser, R. and Aono, M., J. NatureMaterials. 6, 833 (2007)Google Scholar
12. Verbakel, F., Meskers, S. C. J., Janssen, R. A. J., Gomes, H. L., Cölle, M., Büchel, M., de Leeuw, D. M., J. Appl. Phys. Lett. 91, 192103 (2007)Google Scholar