Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T10:19:02.803Z Has data issue: false hasContentIssue false

Piezoelectricity in Monolayers and Bilayers of Inorganic Two-Dimensional Crystals

Published online by Cambridge University Press:  20 June 2013

Karel-Alexander N. Duerloo*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, U.S.A.
Mitchell T. Ong
Affiliation:
Condensed Matter and Materials Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
Evan J. Reed
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, U.S.A.
*
*To whom correspondence should be addressed: [email protected], Tel: [+1] (650) 723 4399, Fax: [+1] (650) 725 4034
Get access

Abstract

The symmetry properties of many inorganic two-dimensional monolayer crystals make them piezoelectric, whereas their three-dimensional parent crystals are not. The emergence of piezoelectricity in the single-layer limit points toward intriguing electromechanical effects and applications in the single- or few-layer regime. We use density functional theory to calculate the piezoelectric coefficients of BN, MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2. These coefficients are found to be comparable to, and in some cases greater than those of commonly used wurtzite piezoelectrics. The centrosymmetry of a BN bilayer prevents a piezoelectric effect for this structure. However, by developing an elastic model, we find that the bilayer exhibits an unusual electromechanical coupling to the curvature, similar to that of a bimorph. A BN bilayer is found to amplify the constituent monolayers’ in-plane piezoelectric displacements by factors on the order of 103-104 into out-of plane deflections.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bertolazzi, S., Brivio, J., Kis, A., Acs Nano, 5 (2011) 97039709.CrossRefGoogle Scholar
Lee, C., Wei, X.D., Kysar, J.W., Hone, J., Science, 321 (2008) 385388.CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science, 306 (2004) 666669.CrossRefGoogle Scholar
Mak, K., Lee, C., Hone, J., Shan, J., Heinz, T., Phys. Rev. Lett., 105 (2010).CrossRefGoogle Scholar
Nye, J.F., Physical Properties of Crystals, Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1957.CrossRefGoogle Scholar
Pease, R.S., Acta Crystallogr., 5 (1952) 356361.CrossRefGoogle Scholar
Wilson, J.A., Yoffe, A.D., Adv. Phys., 18 (1969) 193335.CrossRefGoogle Scholar
Shimada, K., Jpn. J. Appl. Phys., 45 (2006) L358L360.CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., J. Phys.: Condens. Matter, 21 (2009) 395502.Google Scholar
Resta, R., Vanderbilt, D., Physics of Ferroelectrics: A Modern Perspective, in: Rabe, K.M., Ahn, C.H., Triscone, J.-M. (Eds.), Springer-Verlag, Berlin, 2007, pp. 3168.CrossRefGoogle Scholar
King-Smith, R.D., Vanderbilt, D., Phys. Rev. B, 47 (1993) 16511654.CrossRefGoogle Scholar
Duerloo, K.-A.N., Ong, M.T., Reed, E.J., Journal of Physical Chemistry Letters, 3 (2012) 28712876.CrossRefGoogle Scholar
Bechmann, R., Phys. Rev., 110 (1958) 10601061.CrossRefGoogle Scholar
Lueng, C.M., Chan, H.L.W., Surya, C., Choy, C.L., J. Appl. Phys., 88 (2000) 5360.CrossRefGoogle Scholar
Duerloo, K.-A.N., Reed, E.J., Nano Lett.. doi:10.1021/nl4001635 (in press)Google Scholar