Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T22:40:01.386Z Has data issue: false hasContentIssue false

Piezoelectric Fields in Tilted GaInN Quantum Wells

Published online by Cambridge University Press:  01 February 2011

Martin Feneberg
Affiliation:
[email protected], Ulm University, Institute of Semiconductor Physics, Albert-Einstein-Allee 45, Ulm, 89069, Germany
Frank Lipski
Affiliation:
[email protected], Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Rolf Sauer
Affiliation:
[email protected], Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Klaus Thonke
Affiliation:
[email protected], Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Thomas Wunderer
Affiliation:
[email protected], Universität Ulm, Institut für Optoelektronik, Ulm, 89069, Germany
Peter Brückner
Affiliation:
[email protected], Universität Ulm, Institut für Optoelektronik, Ulm, 89069, Germany
Ferdinand Scholz
Affiliation:
[email protected], Universität Ulm, Institut für Optoelektronik, Ulm, 89069, Germany
Get access

Abstract

GaInN/GaN quantum wells (QWs) grown on different crystal facets have been investigated by field-dependent photoluminescence and electroluminescence experiments. Externally applied voltage changes the total field strength and direction of the electric fields inside the quantum wells, consisting of piezoelectric and built-in fields. Electroluminescence with increasing current results in a peak shift due to screening of the field by the injected carriers. By modeling the peak shifts of the photoluminescence (PL) and electroluminescence (EL) signals we found strong piezoelectric fields for a {0001} sample and nearly vanishing fields for a sample grown on the {1-101} plane of GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wunderer, T., Brückner, P., Neubert, B., Scholz, F., Feneberg, M., Lipski, F., Schirra, M., and Thonke, K., Appl. Phys. Lett. 89, 041121 (2006).Google Scholar
2. Neubert, B., Brückner, P., Habel, F., Scholz, F., Riemann, T., Christen, J., Beer, M., and Zweck, J., Appl. Phys. Lett. 87, 182111 (2005).Google Scholar
3. Jho, Y., Yahng, J. S., Oh, E., and Kim, D., Appl. Phys. Lett. 79, 1130 (2001).Google Scholar
4. Brown, I., Pope, I., Smowton, P., Blood, P., Thomson, J., Chow, W., Bour, D., and Kneissl, M., Appl. Phys. Lett. 86, 131108 (2005).Google Scholar
5. Bulashevich, K., Karpov, S., and Suris, R., Phys. Stat. Sol. (b) 243, 1625 (2006).Google Scholar
6. Bernardini, F. and Fiorentini, V., Appl. Phys. Lett. 80, 4145 (2002).Google Scholar