Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T23:12:05.852Z Has data issue: false hasContentIssue false

Physical Properties of Silicon Doped Hetero-Epitaxial MOCVD Grown GaN: Influence of Doping Level and Stress

Published online by Cambridge University Press:  03 September 2012

P.R. Hageman
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
V. Kirilyuk
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
A.R.A. Zauner
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
G.J. Bauhuis
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
P.K. Larsen
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
Get access

Abstract

Silicon doped layers GaN were grown with MOCVD on sapphire substrates using silane as silicon precursor. The influence of the silicon doping concentration on the physical and optical properties is investigated. A linear relationship is found between the silane-input molfraction and the free carrier concentration in the GaN layers. The morphology of the samples is drastically changed at high silicon concentrations. Photoluminescence was used to probe bandgap variations as function of the silicon concentration. Increasing of the doping concentration led to a continuous shift of the exciton related PL to lower energies, while the intensity of the UV emission was found to increase up to a carrier concentration of n=2.5×1018 cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Theije, F.K. de, Zauner, A.R.A., Hageman, P.R., Enckevort, W.J.P. van and Larsen, P.K., J. Crystal Growth 197, 31 (1999)Google Scholar
2 Tang, X., Lochs, H.G.M., Hageman, P.R., Croon, M.H.J.M. de and Giling, L.J., J. Crystal Growth 98, 827 (1989)Google Scholar
3 Prystawko, P., Leszczynski, M., Beaumont, B., Gibart, P., Frayssinet, E., Knap, W., Wisniewski, P., Bockowski, M., Suski, T., Porowski, S., Phys. Status Solidi (b) 210 437 (1998)Google Scholar
4 Rouviere, J.L., Weyher, J.L., Seelmann-Eggebert, M. and Porowski, S., Appl. Phys. Letters 73 (1998) 668 Google Scholar
5 Rouviere, J.L., Arlery, M., Daudin, B., Feuillet, G., Briot, O., Mater. Sci. Eng. B50 61 (1997)Google Scholar
6 Rode, D.L., Gaskill, D.K., Appl. Phys. Letters 66, 1972 (1995)Google Scholar
7 “Gallium Nitride (GaN II)”, Semiconductors and semimetals, volume 57, Edited by Pankove, J.I. and Moustakas, T.D., Academic Press (San Diego) 1999, p. 29.Google Scholar
8 Götz, W., Romano, L.T., Walker, J. and Johnson, N.M., Appl. Phys. Letters 72, 1214 (1998)Google Scholar
9 Hearne, S., Chason, E., Han, J., Floro, J.A., Figiel, J., Hunter, J., Amano, H., Tsong, I.S.T., Appl. Phys. Letters 74, 356 (1999)Google Scholar
10 “Gallium Nitride (GaN II)”, Semiconductors and semimetals, volume 57, Edited by Pankove, J.I. and Moustakas, T.D., Academic Press (San Diego) 1999, p. 289.Google Scholar
11 Vennéguès, P., Beaumont, B., Haffouz, S., Vaille, M., Gibart, P., J. Crystal Growth 187 (1998) 167 Google Scholar
12 Leszczynski, M., Prystawko, P., and Porowski, S., DataReview Series, 99, B 2.3, (1999) 391 Google Scholar