Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T07:43:59.126Z Has data issue: false hasContentIssue false

Physical Properties of Partially Crystallized Fe80B20 Amorphous Alloys

Published online by Cambridge University Press:  15 February 2011

D. Fiorani
Affiliation:
ICMAT-CNR, Area della Ricerca di Roma, C.P. 10, 00016 Monterotondo Stazione, Italy
F. Malizia
Affiliation:
INFM - Dipartimento di Fisica, Università di Ferrara, 1-44100 Ferrara, Italy
F. Ronconi
Affiliation:
INFM - Dipartimento di Fisica, Università di Ferrara, 1-44100 Ferrara, Italy
M. Vittori Antisari
Affiliation:
ENEA, Settore Nuovi Materiali, C.R.E. Casaccia, C.P.2400, 00100 Roma A.D., Italy
Get access

Abstract

The magnetic properties and hyperfine fields were investigated at low temperatures on amorphous Fe80B20 ribbons crystallized at the end of the nucleation-and-growth process without involving coarsening process. The results obtained by SQUID magnetometer and Mössbauer spectrometer show that saturation magnetization and mean magnetic hyperfine field values are greater than those in both the parent amorphous phase and in the fully crystallized structure where coarsening and grain growth processes are involved. Below 200 K irreversibility is observed in low field magnetization measurements. Transmission electron microscopy measurements reveal that spherulites of Fe3B include a radial structure made of small bcc-Fe acicular crystals about 200 nm long and 10 nm wide. In our opinion, magnetic properties and hyperfine fields are ruled by both high magnetic anisotropy of small monodomain acicular bcc-Fe crystallites and the structure of Fe atoms located at their surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Greer, A.L., Acta Metall. 30, 171 (1982).Google Scholar
2. Malizia, F. and Ronconi, F., Phil. Mag. B 68, 869 (1993); J. Appl. Phys. 74, 6988 (1993).Google Scholar
3. Malizia, F. and Ronconi, F. in Crystallization and Related Phenomena in Amorphous Materials. edited by Libera, M., Haynes, T. E., Cebe, P. and Dickinson, E. (Mater. Res. Soc. Proc. 321, Pittsburgh, PA 1994) pp. 355360.Google Scholar
4. Deriu, A., Malizia, F., Ronconi, F., Vittori Antisari, M. and King, S.M., J. Appl. Phys., in press.Google Scholar
5. Fiorani, D., Malizia, F., Ronconi, F. and Vittori Antisari, M., J. Magn. Magn. Mater., in press.Google Scholar
6. Le Caer, G. and Dubois, J.M., J. Phys. E12, 1083 (1979).Google Scholar
7. Fletcher, R., Comput. J. 13, 317 (1970).Google Scholar
8. Williamson, D.L., Bukshpan, S. and Ingalls, R., Phys. Rev. B 6, 4194 (1972).Google Scholar
9. Le Caer, G. and Dubois, J.M., Phys. stat. sol. (a) 64, 275 (1981).Google Scholar
10. Herr, U., Jing, J., Birringer, R., Gonser, U. and Gleiter, H., Appl. Phys. Lett. 50, 472 (1987).Google Scholar