Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T00:23:44.475Z Has data issue: false hasContentIssue false

Physical Properties of Ni3Al Containing 24 and 25 Atomic Percent Aluminum*

Published online by Cambridge University Press:  21 February 2011

R. K. Williams
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
R. S. Graves
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
F. J. Weaver
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. L. McElroy
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Thermal conductivity, electrical resistivity, Seebeck coefficient and thermal expansion data were obtained on well-annealed Ni3Al containing 24 and 25 at. % Al. The results span the temperature range 300 to 1000 K. The expansion coefficients did not vary with composition and increased with temperature, reaching values of aIout 17 × 10−6 K−1 at 1000 K. The thermal conductivity and electrical resistivity changed rapidly with composition, and the thermal conductivity of 24 at. % Al is as much as 30% lower than that for stoichiometric Ni3A1. The electronic Lorenz function of Ni3Al was obtained by subtracting the estimated phonon conductivity component and found to be within about 5% of the Sommerfeld prediction from 300 to 1000 K. The electrical resistivity results for stoichiometric Ni 3Al are influenced by the loss of ferromagnetic order at lower temperatures and are not adequately described by the Bloch-Grüneisen equation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Science, U.S. Department of Energy, under contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1. Fluitman, J.H.J., Boom, R., DeChatel, P. F., Schinkel, C. J., Tilanus, J.L.L., and DeVries, B. R., J. Phys. F: Met. Phys. 3, 109 (1973).Google Scholar
2. Williams, R. K., Weaver, F. J., and Graves, R. S., accepted for publication in Proceedings of 18th International Thermal Conductivity Conference, Rapid City, S.D. (1983).Google Scholar
3. Kollie, T. G., Phys. Rev. B 16, 4872 (1977).Google Scholar
4. Hahn, T. A., J. Appl. Phys. 41, 5096 (1970). Standard Reference Materials (SRMs) Copper (736) and Tungsten (737) are available from the Office of Standard Reference Materials, National Bureau of Standards, Washington, D.C.Google Scholar
5. Moore, J. P., Williams, R. K., and Graves, R. S., J. Appl. Phys. 48, 610 (1977).Google Scholar
6. Graves, R. S., Williams, R. K., and Moore, J. P., in Thermal Conductivity 16, edited by Larsen, D. C. (Plenum Press, New York, 1983), p. 343.Google Scholar
7. Maniar, G. and Bridge, J. E. Jr., Metallog. 5, 91 (1972).Google Scholar
8. Stoeckinger, G. R. and Neumann, J. P., J. Appl. Cryst. 3, 32 (1970).Google Scholar
9. DeDood, W. and DeChatel, P. F., J. Phys. F: Met. Phys. 3, 1039 (1973).Google Scholar
10. Silcock, J. M., Metal Sci. J. 5, 182 (1971).Google Scholar
11. Williams, R. O., TAIME 215, 1026 (1959).Google Scholar
12. Corey, C. L. and Lisowsky, B., TAIME 239, 239 (1967).Google Scholar
13. DeChatel, F. P., DeBoer, F. R., DeDood, W., Fluitman, J.H.J., and Schinkel, C. J., J. De Physiq. Colloq. C1, 999 (1971).Google Scholar
14. Moore, J. P. and Graves, R. S., J. Appl. Phys. 44, 1174 (1973).Google Scholar
15. Blatt, F. J., Schroeder, P. J., Foiles, C. L. and Greig, D., in Thermoelectric Power of Metals (Plenum, New York, 1976), p. 202.Google Scholar
16. Laubitz, M. J., High Temp.-High Press. 4, 379 (1972).Google Scholar
17. Williams, R. K., Yarbrough, D. W., Masey, J. W., Holder, T. K. and Graves, R. S., J. Appl. Phys. 52, 5167 (1981).Google Scholar
18. Williams, R. K. and Fulkerson, W., in Thermal ConductivitZ 8, edited by Ho, C. Y. and Taylor, R. E. (Plenum Press, New York, 1969), p. 389.Google Scholar
19. Williams, R. K., Butler, W. H., Graves, R. S., and Moore, J. P., Phys. Rev. B 28, 6316 (1983).Google Scholar
20. Callaway, J., Phys. Rev. 113, 1046 (1959).Google Scholar
21. Laubitz, M. J., Matsumura, T., and Kelly, P. J., Can. J. Phys. 54, 92 (1976).Google Scholar
22. Fletcher, G. C., Physica 62, 41 (1972).Google Scholar
23. Hackenbracht, D. and KUbler, J., J. Phys. F: Met. Phys. 10, 427 (1980).Google Scholar
24. Buiting, J. J., KUbler, J., and Mueller, F. M., J. Phys. F: Met. Phys. 13, L179 (1983).Google Scholar