No CrossRef data available.
Published online by Cambridge University Press: 10 April 2013
This work describes the study of synthesis and physical characterization of nanostructured manganite oxides. The La0.8Sr0.2MnO3 (LSM) nanotubes and fibers have been prepared by electrospinning and pore wetting technique. The samples were characterized by Xray diffraction (XRD), scanning electron microscopy (SEM) and magnetization as a function of temperature (M(T)). XRD results of LSM fibers and nanotubes revealed that both samples crystallize in a rhombohedra-distorted perovskite structure. SEM pictures of these samples revealed ultrafine grains assembled in fibers and nanotubes samples. Analysis of these images revealed samples with external diameter ranging from 300 to 1.4 mm, and 7 μm to hundreds of mm in length. The M(T) measurements of samples La0.8Sr0.2MnO3 revealed a paramagnetic/ferromagnetic transition with decreasing temperature. Such transition occurs at temperatures of Tc ≈ 337 K and Tc ≈ 360 K for the nanotubes and fibers, respectively. Furthermore, this variation of the Tc values is also reported in literature for other manganite nanostructures. Such variation can be related to the microstructural characteristics observed for both LSM samples produced in this work. In general, it is believed that both methodologies allowed the production of nanostructures LSM. Also, these results suggest that the dimensionality of the samples seems to interfere in the physical properties of LSM manganite.