Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:58:43.551Z Has data issue: false hasContentIssue false

Physical and Electrical Properties of Tantalum Oxide Thin Films Deposited by Low Pressure Chemical Vapor Deposition

Published online by Cambridge University Press:  22 February 2011

William R. Hitchens
Affiliation:
Watkins-Johnson Co., 440 Kings Village Rd., Scott's Valley, CA 95066
Wilbur C. Krusell
Affiliation:
Watkins-Johnson Co., 440 Kings Village Rd., Scott's Valley, CA 95066
Daniel M. Dobkin
Affiliation:
Watkins-Johnson Co., 440 Kings Village Rd., Scott's Valley, CA 95066
Get access

Abstract

Ta2O5 films suitable for DRAM use have been deposited on silicon, polysilicon, and SiO2 by LP-CVD from Ta (OC2H5)5 and O2. Uniformity, reproducibility, and conformality are excellent. Annealed films are polycrystalline, and their surfaces are characterized by 2 nm high, 1 mgr;m diameter nucleation centers surrounded by circular crystallization fronts. The electrical properties of annealed films are dominated by a SiO2-rich layer which forms between the Ta2O5 and the silicon or polysilicon substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yugami, J., Mine, T., Iijima, S., and Hiraiwa, A., Extended Abstracts 20th Conf. on Solid State Devices Materials (Tokyo), 173 (1989).Google Scholar
2. Kaplan, E., Balog, M., and Frohman-Bentchkowsky, D., J. Electrochem, Soc. 123, 1570 (1976).Google Scholar
3. Oehrlein, G. S. and Reisman, A., J. Appl. Phys. 54, 6502 (1983).Google Scholar
4. Saitoh, M., Mori, T., and Tamura, H., IEDM Tech. Digest, 680 (1986).Google Scholar
5. Nishioka, Y., Kimura, S., Shinriki, H., and Mukai, K., J. Electrochem. Soc. 134, 410 (1987).Google Scholar
6. Nishioka, Y., Homma, N., Shinriki, H., Mukai, K., Yamaguchi, K., Uchida, A., Higeta, K., and Ogiue, K., IEEE Trans. Electron Devices ED-34, 1957 (1987).Google Scholar
7. Banerjee, S., Shen, B., Chen, I., Bohlman, J., Brown, G., and Doering, R., J. Appl. Phys. 65, 1140 (1989).Google Scholar
8. Shinriki, H., Nakata, M., Nishioka, Y., and Mukai, K., IEEE Electron Device Lett. 10, 514 (1989).Google Scholar
9. Zaima, S., Furuta, T., Yasuda, Y., and Iida, M., J. Electrochem. Soc. 137, 1297 (1990).Google Scholar
10. Isobe, C. and Saitoh, M., Appl. Phys. Lett. 56, 907 (1990).Google Scholar
11. Shinriki, H. and Nakata, M., IEEE Trans. Electron Devices 38, 455 (1991).Google Scholar
12. Tanimoto, S., Matsui, M., Kamisako, K., Kuroiwa, K., and Tarui, Y., J. Electrochem Soc. 139, 320 (1992).Google Scholar
13. Treichel, H., 4th Annual Schumacher Dielectrics and CVD Metallization Symp., 57 (1992).Google Scholar
14. Kamiyama, S., Saeki, T., Mori, H., and Numasawa, Y., IEDM Tech. Digest, 827 (1991).Google Scholar
15. Kaga, T., Kure, T., Shinriki, H., Kawamoto, Y., Murai, F., Nishida, T., Nakagome, Y., Hisamoto, D., Kisu, T., Takeda, E., and Itoh, K., IEEE Trans. Electron Devices 38, 255 (1991).Google Scholar
16. Roberts, S., Ryan, J., and Nesbit, L., J. Electrochem. Soc. 133, 1405 (1986).Google Scholar
17. Shinriki, H., Nishioka, Y., Ohji, Y., and Mukai, K., IEEE Trans. Electron Devices 36, 328 (1989).Google Scholar