Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:17:49.747Z Has data issue: false hasContentIssue false

Physical and Electrical Properties of Polycrystalline Silicon Thin Films

Published online by Cambridge University Press:  15 February 2011

Krishna C. Saraswat*
Affiliation:
Integrated Circuits Laboratory, Stanford University, Stanford, California, USA
Get access

Abstract

Physical and electrical properties of chemically-vapordeposited polycrystalline silicon films have been investigated. Effects of deposition parameters, doping, and high temperature processing on grain size and orientation, carrier concentration, carrier mobility and electrical resistivity, have been studied. By relating the physical and electrical properties to each other it has been shown that electrical conduction is controlled by dopant segregation, carrier tunneling, and trapping at grain boundaries. Models for these three mechanisms have been developed and by combining them a generalized model for electrical conduction has been developed. Presence of grain boundaries has also been shown to strongly influence the thermal oxidation and dopant diffusion in polycrystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rosler, R. S., Solid State Tech., 20, 63 (1977).Google Scholar
2. Brown, W. A. and Kamins, T. I., Solid State Tech., 22, 2979, 51 (1979).CrossRefGoogle Scholar
3. Kamins, T. I., Mandurah, M. M. and Saraswat, K. C., J. Electrochem. Soc., 125, 927, (1978).CrossRefGoogle Scholar
4. Kamins, T. I., J. Flectrochem. Soc., 127, 686 (1980).CrossRefGoogle Scholar
5. Kamins, T. I. and Cass, T. R., Thin Solid Films, 16, 147 (1973).CrossRefGoogle Scholar
6. Wada, Y. and Nishimatsu, S., J. Electrochem. Soc., 125, 1499 (1978).CrossRefGoogle Scholar
7. Mei, L., Rivier, M., Kwark, Y. and Dutton, R. W., Silicon Semiconductor 1981, 81–5, 1007 (1981).Google Scholar
8. Ryssel, H., Iberl, H., Bleier, M., Prinke, G., Haberger, K. and Krang, H., Appl. Phys., 24, 197, (1981).CrossRefGoogle Scholar
9. Tsukamoto, K., Akasaka, Y. and Horie, K., J. Appl. Phys., 48, 1815 (1977).CrossRefGoogle Scholar
10. Swaminathan, B., Saraswat, K. C., Dutton, R. W. and Kamins, T. I., Appl. Phys. Lett. (Submitted).Google Scholar
11. Cowher, M. E. and Sedgwick, T. O., 119, 1565 (1972).Google Scholar
12. Seto, J. Y. W., J. Appl. PHys., 46, 5247 (1975).CrossRefGoogle Scholar
13. Seager, C. H. and Castner, T. G., J. Appl. Phys., 49, 3879 (1978).CrossRefGoogle Scholar
14. Baccarani, G., Ricco, B. and Spadini, G., J. Appl. Phys., 49, 5565 (1978).CrossRefGoogle Scholar
15. Lu, N. C. C., Gerzberg, L., Lu, C. Y. and Meindl, J. D., IEEE Trans. Electron Dev., ED28, 818 (1981).CrossRefGoogle Scholar
16. Mandurad, M. M., Saraswat, K. C. and Kamins, T. I., J. Electrchem. Soc., 126, 1019 (1979).CrossRefGoogle Scholar
17. Mandurah, M. M., Saraswat, K. C., Helms, C. R. and Kamins, T. I., J. Appl. Phys., 51, 5755 (1980).CrossRefGoogle Scholar
18. Mandurah, M. M., Saraswat, K. C. and Kamins, T. I., IEEE Trans. Elect. Dev. ED28, 1163 (1981).CrossRefGoogle Scholar
19. Mandurah, M. M., Saraswat, K. C. and Kamins, T. I., IEEE Trans. Elect. Dev. ED28, 1171 (1981).CrossRefGoogle Scholar
20. Kamins, T. I. and Mackenna, E. L., Metal Trans., 2, 2292 (1971).CrossRefGoogle Scholar
21. Irene, E. A., Tierney, E. and Dong, D. W., J. Electrochem. Soc., 127, 705 (1980).CrossRefGoogle Scholar
22. Sunami, H., J. Electrochem. Soc., 125, 892 (1978).CrossRefGoogle Scholar
23. Saraswat, K. C. and Singh, H., J. Electrochem. Soc., 129, (1982) (To be published).CrossRefGoogle Scholar