Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:29:21.593Z Has data issue: false hasContentIssue false

Photovoltaic Effect in Multilayer Organic Systems

Published online by Cambridge University Press:  21 March 2011

G. Meinhardt
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, A-8010 Graz, Austria
E. Moderegger
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, A-8010 Graz, Austria
R. Schröder
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, A-8010 Graz, Austria
G. Winter
Affiliation:
Institut für Organische Chemie, Universität Tübingen, D-72076 Tübingen, Germany
M. Hanack
Affiliation:
Institut für Organische Chemie, Universität Tübingen, D-72076 Tübingen, Germany
H. Quante
Affiliation:
Max-Planck-Institut für Polymerforschung, D-55021 Mainz, Germany
Y. Geerts
Affiliation:
Max-Planck-Institut für Polymerforschung, D-55021 Mainz, Germany
K. Müllen
Affiliation:
Max-Planck-Institut für Polymerforschung, D-55021 Mainz, Germany
H. Tillmann
Affiliation:
Institut für Organische Chemie und Makromolekulare Chemie, Universität Jena, D-07743 Jena, Germany
H.-H. Hörhold
Affiliation:
Institut für Organische Chemie und Makromolekulare Chemie, Universität Jena, D-07743 Jena, Germany
G. Leising
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, A-8010 Graz, Austria
Get access

Abstract

The organic materials presented here, e.g. cyano-ether-PPV, different bisarylamidine-perylenes and conventional as well as substituted forms of phthalocyanines exhibit the advantages of low processing costs and the simplicity of tuning their optical properties. Hence they are promising candidates to be used in large area photovoltaic applications. The investigated cells consist of one or two organic layers sandwiched between electrodes of indium tin oxide (ITO) and aluminum. The experimental techniques of electroabsorption(EA)- spectroscopy, photocurrent-action spectroscopy and current voltage characterization were used to gain further insight into the process of charge generation, charge separation and transport of the charged species to the electrodes. To enhance the quantum efficiencies of the photovoltaic cells, combinations of organic materials with electron-accepting and electron- donating properties in multilayer devices were investigated. We chose the organic materials copper-phthalocyanine and a bisarylamidineperylene whose HOMO and LUMO level alignment should favor a charge transfer process in order to increase the photocurrent(PC) responsivity by enhanced exciton dissociation. Additionally, one of the two layers of a double layer device was blended with small amounts of the material constituting the second layer to further increase charge carrier generation by extending the dissociation zone.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Willander, M., Assadi, A. and Svensson, C., Synth. Met., 57, 4099, (1993)Google Scholar
2 Patridge, A.C., Harris, P., and Andrews, M.K., Analyst., 121, 1349, (1996)Google Scholar
3 Yu, G. and Heeger, A.J., Synth. Met., 85, 1183, (1987)Google Scholar
4 Friend, R.H. et al. , Solid State Commun., 102, 249, (1997)Google Scholar
5 Tang, C. W. and Albrecht, A.C., J. Chem. Phys., 62, 2139, (1975)Google Scholar
6 Moser, F.H. et al. “The Phthalocyanines”, VolII, CRC Press, Inc., Boca Raton 1983 Google Scholar
7 Hohnholz, D., Steinbacher, S., Hanack, M., J. Mol. Struct., in pressGoogle Scholar
8 Tillmann, H. and Hörhold, H.H., Synth. Met., 101, 138139, (1999)Google Scholar
9 , Bayer, Baytron P Produkt Information, 01/1997 Google Scholar
10 Inganaes, O. et al. , Polymer, 35, 1347, (1994)Google Scholar
11 Brown, T.M. et al. , Appl. Phys. Lett., 75, 16791681, (1999)Google Scholar
12 Haisch, P. et al. , Adv. Mat., 9, 316, (1997)Google Scholar
13 Quante, H., Geerts, Y., and Müllen, K., Chem. Mater., 9, 495500, (1997)Google Scholar
14 Quante, H., Ph.D. Thesis, (1995)Google Scholar
15 Ghosh, A.K. et al. , Journal of Applied Physics, 45, 230236, (1974)Google Scholar
16 Meinhardt, G. et al. , SPIE Proceedings, 3623, 4657, (1999)Google Scholar
17 Yoshida, H., Tokura, Y. and Koda, T, Chem. Phys., 109, 375, (1986)Google Scholar
18 Campbell, I.H., Joswick, M.D. and Parker, I.D., Appl. Phys. Lett., 67, 3171, (1995)Google Scholar