Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-04T18:06:34.043Z Has data issue: false hasContentIssue false

Photoreactions in Polyalkylsilynes Induced by ArF-Laser Irradiation

Published online by Cambridge University Press:  25 February 2011

R. R. Kunz
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173–9108
P. A. Bianconi
Affiliation:
Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802
M. W. Horn
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173–9108
D. A. Smith
Affiliation:
Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802
C. A. Freed
Affiliation:
Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802
Get access

Abstract

Photoreactions in polyalkylsilyne thin films induced by ArFlaser (193 nm) irradiation have been examined. Photoexcitation of the σ-conjugated Si-network at 193 nm (6.42 eV) results in Si-Si bond scission and alkyl-group desorption when irradiated in a vacuum. In addition to these processes, efficient (up to 7% quantum efficiency) insertion of oxygen into the Si backbone occurs when the irradiation is performed in air, resulting in the formation of a siloxane. Both infrared and X-ray photoelectron spectroscopies indicate a higher oxygen coordination about the Si atoms in the oxidized product than observed for linear polysilanes. This higher oxygen coordination indicates a siloxane network. The polysilynes have been demonstrated as deep UV photoresists and may have additional applications as precursors for thin film or binary optical components.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bianconi, P. A. and Weidman, T. W., J. Amer. Chem. Soc. 110, 2342 (1988).Google Scholar
2. Bianconi, P. A., Schilling, F. C., and Weidman, T. W., Macromol. 22, 1697 (1989).Google Scholar
3. Kunz, R. R., Horn, M. W., Goodman, R. B., Bianconi, P. A., Smith, D. A., and Freed, C. A., J. Vac. Sci. Technol. B 7 (1990) (in press).Google Scholar
4. Hornak, L. A., Weidman, T. W., and Kwock, E. W., J. Appl. Phys. 67, 2235 (1990).Google Scholar
5. Weidman, T. W., submitted for publication in J. Amer. Chem. Soc.Google Scholar
6. Gibson, R. A., LeComber, P. G., and Spear, W. E., IEEE J. Solid State Electron Devices 2, 83 (1978).Google Scholar
7. Miller, R. D. and Michl, J., Chem. Rev. 89, 1359 (1989).Google Scholar
8. Smith, A. L. and Angelotti, N. C., Spectrochim. Acta 15, 412 (1959).Google Scholar
9. Lucovsky, G., Nemanich, R. J., and Knights, J. C., Phys. Rev. B 19, 2064 (1979).Google Scholar
10. Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., and Muilenberg, G. E., Handbook of X-ray Photoelectron Speotroscopy (Perkin-Elmer Co., Eden Prairie, MN).Google Scholar
11. Zeigler, J. M., Harrah, L. A., and Johnson, A. W., SPIE Proc. 539, 166 (1985).Google Scholar
12. Horn, M. W., Paladugu, R., Goodman, R. B., and Kunz, R. R., J. Vac. Sci. Technol. B 8 (1991) (in press).Google Scholar
13. Le, H. Q., Kunz, R. R., Bianconi, P. A., Smith, D. A., and Freed, C. A., unpublished results.Google Scholar
14. Yang, L., Dorsinville, R., Wang, Q. Z., Zou, W. K., Ho, P. P., Yang, N. L., Alfano, R. R., Zamboni, R., Danieli, R., Ruani, G., and Taliani, C., J. Opt. Soc. Am. B. 6, 753 (1989).Google Scholar