Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T14:43:38.685Z Has data issue: false hasContentIssue false

Photonic-Fluidic Integrated Microstructures for Sensor and Photonic Device Applications

Published online by Cambridge University Press:  01 February 2011

Claire L. Callender
Affiliation:
[email protected], Communications Research Centre, Broadband Network Technologies, 3701 Carling Ave,, PO Box 11490 Station H, Ottawa, K2H 8S2, Canada, 613-998-2726, 613-990-8382
Patrick Dumais
Affiliation:
[email protected], Communications Research Centre, Ottawa, ON, K2H 8S2, Canada
Christopher J. Ledderhof
Affiliation:
[email protected], Communications Research Centre, Ottawa, ON, K2H 8S2, Canada
Julian P. Noad
Affiliation:
[email protected], Communications Research Centre, Ottawa, ON, K2H 8S2, Canada
Get access

Abstract

The design, fabrication and characterization of liquid-filled microchannels embedded in silica layers and integrated with optical waveguides for applications in on-chip sensors and novel photonic devices are presented. These integrated microstructures are formed using plasma-enhanced chemical vapor deposition (PECVD), photolithography and reactive ion etching (RIE). Surface accessible fluid introduction ports have been developed, and microfluidic circuits including bends, T-junctions and splitters are demonstrated. Coupling of light from integrated solid silica waveguides via directional coupling or direct end-fire coupling into fluid filled channels has been achieved on-chip, and optical losses assessed experimentally and theoretically. Optimization of the microstructures for sensor applications and for novel photonic devices based on nonlinear and other optical properties of fluids in integrated liquid waveguide segments is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lien, V., Zhao, K., Berdichevsky, Y. and Lo, Y.-H., IEEE J. Select. Topics in Quant. Electron., 11(4) 827–834 (2005).Google Scholar
2. Leeds, A.R., Keuren, E.T. Van, Durst, M.E., Schneider, T.W., Currie, J.F. and Paranjape, M., Sensors and Actuators A, 115, 571580 (2004).Google Scholar
3. Mogensen, K.B., El-Ali, J., Wolff, A. and Kutter, J.P., Appl. Opt., 42(19), 40724079 (2003).Google Scholar
4. Lee, G.-B., Lin, C.-H. and Guan, G.-L., Sensors and Actuators, A: Physical, 103(1–2), 165–170 (2003).Google Scholar
5. Qiao, H., Goel, S., Grundmann, A. and McMullen, J.N., Proc. SPIE v 5062 Smart Materials, Structures and Systems, 873–878 (2002).Google Scholar
6. Cleary, A., Garcia-Blanco, S., Glidle, A., Aitchison, J.S., Laybourn, P. and Cooper, J.M., IEEE Sensors J., 5(6), 13151320 (2005).Google Scholar
7. Friis, P., Hoppe, K., Leistiko, O., Mogensen, K. B., Hübner, J. and Kutter, J. P., Appl. Opt., 40(34), 62466251 (2001).Google Scholar
8. Cheng, Y., Sugioka, K. and Midorikawa, K., Proc. SPIE, v 5627, High-Power Lasers and Applications III, p 247256, (2005).Google Scholar
9. Said, A. A., Dugan, M., Bado, P., Bellouard, Y., Scott, A. and Mabesa, J.R. Jr., Proc. SPIE, v 5339, Photon Processing in Microelectronics and Photonics III, 194-204 (2004).Google Scholar
10. Callender, C.L., Ledderhof, C.J., Dumais, P., Blanchetière, C., Noad, J.P., J. Mat. Res., 20(3), 759764 (2005).Google Scholar
11. Dumais, P., Callender, C.L., Ledderhof, C.J. and Noad, J.P., Appl. Opt., in press.Google Scholar
12. Dumais, P., Callender, C.L., Noad, J.P. and Ledderhof, C.J., Photonics Technol. Lett., 17(2), 441443 (2005).Google Scholar
13. Dumais, P., Callender, C.L., Noad, J.P. and Ledderhof, C.J., Photonics Technol. Lett., 18(6) 746–748 (2006).Google Scholar