Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:23:13.569Z Has data issue: false hasContentIssue false

Photonic Crystal Structures of Biologic Origin: Butterfly Wing Scales

Published online by Cambridge University Press:  01 February 2011

L´szló Péter Biró
Affiliation:
[email protected], Research Institute for Technical Physics and Materials Science, Nanotechnology, POB 49, Budapest, H-1121, Hungary, +36-1-3922681, +36-1-3922226
Zsolt Bálint
Affiliation:
[email protected], Hungarian Natural History Museum, Baross utca 13, Budapest, H-1088, Hungary
Krisztián Kertész
Affiliation:
[email protected], Research Institute for Technical Physics and Materials Science, Nanostructures Laboratory, POB 49, Budapest, H-1121, Hungary
Zofia Vértesy
Affiliation:
[email protected], Research Institute for Technical Physics and Materials Science, Nanostructures Laboratory, POB 49, Budapest, H-1121, Hungary
Géza István Márk
Affiliation:
[email protected], Research Institute for Technical Physics and Materials Science, Nanostructures Laboratory, POB 49, Budapest, H-1121, Hungary
Levente Tapasztó
Affiliation:
[email protected], Research Institute for Technical Physics and Materials Science, Nanostructures Laboratory, POB 49, Budapest, H-1121, Hungary
Jean-Pol Vigneron
Affiliation:
[email protected], Facultes Universitaires Notre-Dame de la Paix, Solid State Physics Laboratory, Rue de Bruxelles 61, Namur, B-5000, Belgium
Virginie Lousse
Affiliation:
[email protected], Facultes Universitaires Notre-Dame de la Paix, Solid State Physics Laboratory, Rue de Bruxelles 61, Namur, B-5000, Belgium
Laszlo Peter Biro
Affiliation:
[email protected], Research Institute for Technical Physics and Materials Science, Nanotechnology, POB 49, Budapest, H-1121, Hungary
Get access

Abstract

Photonic crystal type nanoarchitectures (built of chitin and air) occurring in the scales of two male butterflies, with dorsal blue and ventral green coloration were investigated by optical microscopy, SEM and TEM. Reflectance data were collected by normal incidence measurements and by integrated reflectance measurements, too. Reflectance peaks with close positions in the blue range of the spectrum were found both for the single crystalline scales and for the most disordered photonic band gap material. Polycrystalline structures with grain size on the micron scale produce matt reflectors, while moderately ordered “pepper-pot” type structures can yield surfaces with shiny aspect. It was found that the cover scales on each sides of the wing are primarily responsible for the observed colors. The character of the observed colors (shiny, or matt) correlates with the habitat of the investigated butterflies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
2. Joannopoulos, J. D., Meade, R. D., Winn, J. N., Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 1995) pp. 2237.Google Scholar
3. Onslow, H., Nature 106, 149 (1920).Google Scholar
4. Anderson, Th. F. and Richards, A. G. Jr, J. Appl. Phys. 13, 748 (1942).Google Scholar
5. Vukusic, P., Sambles, J. R., Lawrence, C. R. and Wootton, R. J., Proc. R. Soc. Lond. B 266, 1403 (1999)Google Scholar
6. Ghiradella, H., Aneshansley, D., Eisner, Th., Silberglied, R. E., Hinton, H. E., Science 178, 1214 (1972)Google Scholar
7. Welch, W.L., in: Kinoshita, S., Yoshioka, S. (Eds.), Structural Colors in Biological Systems – Principles and Applications, Osaka University Press, Osaka, 2005, pp. 53–75.Google Scholar
8. Stavenga, D. G., Giraldo, M. A., and Hoenders, B. J., Opt. Express 14, 4880 (2006).Google Scholar
9. Ghiradella, H., Ann. Entomol. Soc. Am. 77, 637 (1984)Google Scholar
10. Kinoshita, S., Yoshioka, S. Fujii, Y. and Okamoto, N., Forma 17, 103 (2002).Google Scholar
11. Gralak, B., Tayeb, G., S. Enoch, Opt. Express 9, 567 (2001).Google Scholar
12. Berthier, S., Charron, E., and Boulenguez, J., Insect Science 13, 145 (2006).Google Scholar
13. Kertész, K., Bálint, Zs., Vértesy, Z., Márk, G. I., Lousse, V., Vigneron, J. P., Rassart, M., and Biró, L. P., Phys. Rev E. 74, 021922 (2006).Google Scholar
14. Tilley, R. J. D., Eliot, J. N., Trans. Lepid. Soc. Jpn., 53, 153 (2002).Google Scholar
15. Biró, L. P. et al. Phys. Rev. E 67, 021907 (2003).Google Scholar
16. Eliot, J. N., Bulletin of the British Museum (Natural History) – Entomology 28, 373 (1973).Google Scholar
17. Ghiradella, H., in: Microscopic Anatomy of Invertebrates Vol. 11A, (Wiley-Liss, 1998). pp. 257287.Google Scholar
18. Prum, R. O., Quinn, T. and Torres, R. H., J. Exper. Biol. 209, 748 (2006).Google Scholar
19. Loidko, V. A., Ivanov, A. P., Dik, V. P., Zhurnal Prokladnois Spektroskopii 42, 828 (1985).Google Scholar
20. Kinoshita, S. and Yoshioka, S., ChemPhysChem 6, 1442 (2005).Google Scholar
21.http://www.softadmin.ro/biophotGoogle Scholar
22. Biró, L. P., Kertész, K., Vértesy, Z., Ḿrk, G. I., B́lint, Zs., Lousse, V., Vigneron, J-P., Mat. Sci. Eng. C, in press, available electronically since 2006 Nov. 26 at: http://www.sciencedirect.com/science/journals/ Google Scholar
23. Márk, G. I., Vértesy, Z., Bálint, Zs., Kertész, K., and Biró, L. P., to be submitted to Phys. Rev E.Google Scholar
24. Ghiradella, H., J. Morphology 88, 69 (1989).Google Scholar