Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T18:44:20.268Z Has data issue: false hasContentIssue false

Photoluminescence within Crystalline-Si/SiO2 Single Quantum Wells.

Published online by Cambridge University Press:  11 February 2011

D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
M. W. C. Dharma-wardana
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
Z. H. Lu
Affiliation:
Department of Materials Science and Engineering, University of Toronto, Toronto, M5S 3E4, Canada
D. H. Grozea
Affiliation:
Department of Materials Science and Engineering, University of Toronto, Toronto, M5S 3E4, Canada
P. Carrier
Affiliation:
Département de Physique et Groupe de Recherche en Physique et Technologie des Couches Minces (GCM), Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
Laurent J. Lewis
Affiliation:
Département de Physique et Groupe de Recherche en Physique et Technologie des Couches Minces (GCM), Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
Get access

Abstract

Ultrathin single quantum wells of crystalline silicon (c-Si) confined by SiO2 have been prepared by chemical and thermal processing of silicon-on-insulator wafers. The photoluminescence (PL) produced by these nanometer-thick single wells contains two bands: one exhibits a peak energy of ∼1.8 eV, while the second increases rapidly in peak energy with decreasing c-Si layer thickness. Comparison with theories based on self-consistent first-principles calculations shows that the increase in PL peak energy of the second band is consistent with that predicted for the c-Si energy gap of such wells. It also agrees with the measured band gap variation. The ∼1.8 eV PL band is attributed to the recombination of electron-hole pairs confined at the c-Si/SiO2 interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, Z. H., Lockwood, D. J., Baribeau, J.- M., Nature 378, 258 (1995).Google Scholar
Novikov, S.V., Sinkkonen, J., Kilpelä, O., Gastev, S.V., J. Vac. Sci. Technol. B 15(4), 1471 (1997);Google Scholar
Khriachtchev, L., Räsänen, M., Novikov, S., Kilpelä, O., Sinkkonen, J., J. Appl. Phys. 86, 5601 (1999).Google Scholar
Mulloni, V., Chierchia, R., Mazzeleni, C., Pucker, G., Pavesi, L., Bellutti, P., Philos. Mag. B 80, 705 (2000);Google Scholar
Kanemitsu, Y., Liboshi, M., Kushida, T., Appl. Phys. Lett. 76, 2200 (2000).Google Scholar
4. Lu, Z.H., Grozea, D., Appl. Phys. Lett. 80, 255 (2002).Google Scholar
5. Takahashi, Y., Furota, T., Ono, Y., Ishiyama, T., Tabe, M., Jpn. J. Appl. Phys. 34, 950 (1995).Google Scholar
6. Kanemitsu, Y., Okamoto, S., Phys. Rev. B, 56, R15561 (1997).Google Scholar
7. Kageshima, H., Shiraishi, K., Mat. Res. Soc. Symp. Proc. 486, 337 (1998).Google Scholar
8. Tit, N., Dharma-wardana, M. W. C., J. Appl. Phys. 86, 1 (1999);Google Scholar
Tran, M., Tit, N., Dharma-wardana, M. W. C., Appl. Phys. Lett. 75, 4136 (1999).Google Scholar
9. Agrawal, B. K. and Agrawal, S., Appl. Phys. Lett. 77, 3039 (2000).Google Scholar
10. Carrier, P., Lewis, L. J., Dharma-wardana, M. W. C., Phys. Rev. B 65, 165339 (2002).Google Scholar
11. Carrier, P., Lewis, L. J., Dharma-wardana, M. W. C., Phys. Rev. B 64, 195330 (2001).Google Scholar
12. See for instance, Turtle, B., Phys. Rev. B 60, 2631 (1999).Google Scholar
13. Lu, Z. H., Graham, M.J., Jiang, D. T., Tan, K.H., Appl. Phys. Lett. 63, 2941 (1993);Google Scholar
Himpsel, F. J., McFeely, F. R., Taleb-Ibrahimi, A., Yarmoff, J.A., Phys. Rev. B 38, 6084 (1988).Google Scholar
14. The initial Si/SiO2 structure used here to generate the FRMs is the ‘Model III’ described in Pasquarello, A., Hybertsen, M. S., and Car, R., Appl. Surf. Sci. 104/105, 317 (1996).Google Scholar
15. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W., and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
16. Fuggle, J. C., in Unnoccupied Electronic States, edited by Fuggle, J. C. and Inglesfield, J. E., topics in Applied Physics Vol. 69 (Springler-Verlag, Berlin, 1992).Google Scholar
17. Carrier, P., Lu, Z.-H., Dharma-wardana, M. W. C., Lewis, L. J., Submitted to Phys. Rev. Lett. (august 2002). Available at the Papyrus – Institutional Eprints Repository: http://papyrus.bib.umontreal.ca/archive/00000006/01/CoreLevel.pdf Google Scholar