Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:23:40.895Z Has data issue: false hasContentIssue false

Photoluminescence of Erbium Implanted in SiGe

Published online by Cambridge University Press:  10 February 2011

S. J. Chang
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, Taiwan, ROC
D. K. Nayak
Affiliation:
Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
Y Shiraki
Affiliation:
Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
Get access

Extract

The optical properties of an Er-implanted SiGe sample have been studied Sharp and temperature-stable Er-related PL peaks were observed at around 1.5pm, which correspond to the Er 4I13/2 to 4I15/2 transition. It was found that the Er ions form more than three noncubic luminescence centers in the SiGe host. Although the PL intensity quenches at high temperatures, the Errelated PL signal can still be observed at room temperature. For a Si0.87Ge0.13:Er sample annealed at 850°C for 20 min, the activation energy is 130 meVwhich is slightly smaller than that of the Er-doped Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Taguchi, A., Takahei, k. and Nakata, J.: Mater. Res. Symp. Proc. 301 (1993) 139.Google Scholar
2) Dietrich, H. B., Klein, P. B. and Mrstik, B. J.: Proc. SPIE 530 (1985) 195.Google Scholar
3) Tang, Y. S., heasman, K. C., Gillin, W. P. and Sealy, B. J.: Appl. Phys. Lett. 55 (1989) 432.Google Scholar
4) Ennen, H., Pomrenke, G., Axmann, A., Kisele, K., Haydi, W. and Schneider, J.: Appl. Phys. Lette. 45 (1989) 381.Google Scholar
5) Ren, F. Y. G., Michel, J., Sun-Paduano, Q., Zheng, B., Kitagawa, H., Jacobson, D. C., Poate, J. M. and Kimerling, L. C.: Mater. Res. symp. Proc. 301 (1993) 87.Google Scholar
6) Eaglesham, D. J., Michel, J., Fitzgerald, E. A., Jacobson, D. C., Poate, J. M., Benton, J. L., Polman, A., Xie, Y. H. and Kimerling, L. C.: Appl. Phys. Lett. 58 (1991) 2797.Google Scholar
7) Benton, J. L., Michel, J., Kimerling, L. C., Jacobson, D. C., Xie, Y. H., Eagleham, D. J., Fitzgerald, E. A. and Poate, J. M.: J. appl. Phys. 70 (1991) 2667.Google Scholar
8) Taguchi, A., Taniguchi, M. and Takahei, K.: Appl. Phys. Lett. 60 (1992) 965.Google Scholar
9) Efeoglu, H., Evans, J. H., Jackson, T.E., Hamilton, B., Houghton, D. C., Langer, J. M., Peaker, A. R., Perovic, D., Poole, I., Ravel, N., Hemment, P. and Chan, C. W.: Semicond. Sci. Technol. 8 (1993) 236.Google Scholar
10) Fukatsu, S., Yoshida, H., Usami, N., Fujiwara, A., Takahashi, Y., Shiraki, Y. and Ito, R.. Jpn. J. Appl. Phys.31 (1992) 1319.Google Scholar
11) People, R.:IEEE J. Quantum Electron. 22 (1986) 1696.Google Scholar
12) Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eagleham, D. J., Fitzgerald, E. A., Xie, Y. H., Poate, J. M. and Kimerling, L. C.: J. Appl. Phys. 70 (1991) 2672.Google Scholar